fastplyr
fastplyr aims to provide a tidyverse frontend using a collapse backend. This means from a user’s point of view the functions behave like the tidyverse equivalents and thus require little to no changes to existing code to convert.
fastplyr is designed to handle operations that involve larger numbers of groups and generally larger data.
Installation
You can install the development version of fastplyr from GitHub with:
# install.packages("pak")
pak::pak("NicChr/fastplyr")
Load packages
library(tidyverse)
#> Warning: package 'dplyr' was built under R version 4.4.1
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#> ✔ dplyr 1.1.4 ✔ readr 2.1.5
#> ✔ forcats 1.0.0 ✔ stringr 1.5.1
#> ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
#> ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
#> ✔ purrr 1.0.2
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(fastplyr)
#>
#> Attaching package: 'fastplyr'
#>
#> The following object is masked from 'package:dplyr':
#>
#> desc
#>
#> The following objects are masked from 'package:tidyr':
#>
#> crossing, nesting
library(nycflights13)
library(bench)
While the syntax and user-interface of fastplyr aligns very closely with dplyr most of the time, there can be a few key differences.
Differences between fastplyr and dplyr
dplyr alternatives
All tidyverse alternative functions are prefixed with ‘f_’. For
example, dplyr::distinct
becomes fastplyr::f_distinct
.
distinct
flights |>
f_distinct(origin, dest)
#> # A tibble: 224 × 2
#> origin dest
#> <chr> <chr>
#> 1 EWR IAH
#> 2 LGA IAH
#> 3 JFK MIA
#> 4 JFK BQN
#> 5 LGA ATL
#> # ℹ 219 more rows
f_distinct
has an additional sort
argument which is much faster than
sorting afterwards.
mark(
fastplyr_distinct_sort = flights |>
f_distinct(origin, dest, tailnum, sort = TRUE),
dplyr_distinct_sort = flights |>
distinct(origin, dest, tailnum) |>
arrange_all()
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_distinct_sort 10.2ms 11.2ms 85.8 2.95MB 4.19
#> 2 dplyr_distinct_sort 23.8ms 25.3ms 39.2 11.38MB 7.36
group_by
f_group_by
operates very similarly with an additional feature that
allows you to specify whether group data should be ordered or not. This
ultimately controls if the groups end up sorted in expressions like
count
and summarise
, but also in this case f_count
and
f_summarise
.
# Like dplyr
flights |>
f_group_by(month) |>
f_count()
#> # A tibble: 12 × 2
#> # Groups: month [12]
#> month n
#> <int> <int>
#> 1 1 27004
#> 2 2 24951
#> 3 3 28834
#> 4 4 28330
#> 5 5 28796
#> # ℹ 7 more rows
# Group data is sorted by order-of-first appearance
flights |>
f_group_by(month, order = FALSE) |>
f_count()
#> # A tibble: 12 × 2
#> # Groups: month [12]
#> month n
#> <int> <int>
#> 1 1 27004
#> 2 10 28889
#> 3 11 27268
#> 4 12 28135
#> 5 2 24951
#> # ℹ 7 more rows
Just a reminder that all fastplyr functions are interchangeable with dplyr ones both ways
### With dplyr::count
flights |>
f_group_by(month) |>
count()
#> # A tibble: 12 × 2
#> # Groups: month [12]
#> month n
#> <int> <int>
#> 1 1 27004
#> 2 2 24951
#> 3 3 28834
#> 4 4 28330
#> 5 5 28796
#> # ℹ 7 more rows
### With dplyr::group_by
flights |>
group_by(month) |>
f_count()
#> # A tibble: 12 × 2
#> # Groups: month [12]
#> month n
#> <int> <int>
#> 1 1 27004
#> 2 2 24951
#> 3 3 28834
#> 4 4 28330
#> 5 5 28796
#> # ℹ 7 more rows
summarise
f_summarise
behaves like dplyr’s summarise
except for two things:
- It evaluates expressions independently
- There are optimisations for common statistical functions which are very fast for many groups
grouped_flights <- flights |>
group_by(across(where(is.character)))
grouped_flights |>
f_summarise(
n = n(), mean_dep_delay = mean(dep_delay)
)
#> # A tibble: 52,807 × 6
#> carrier tailnum origin dest n mean_dep_delay
#> <chr> <chr> <chr> <chr> <int> <dbl>
#> 1 9E N146PQ JFK ATL 8 9.62
#> 2 9E N153PQ JFK ATL 5 -0.4
#> 3 9E N161PQ JFK ATL 3 -2
#> 4 9E N162PQ EWR DTW 1 160
#> 5 9E N162PQ JFK ATL 1 -6
#> # ℹ 52,802 more rows
And a benchmark
mark(
fastplyr_summarise = grouped_flights |>
f_summarise(
n = n(), mean_dep_delay = mean(dep_delay)
),
dplyr_summarise = grouped_flights |>
summarise(
n = n(), mean_dep_delay = mean(dep_delay, na.rm = TRUE),
.groups = "drop"
)
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_summarise 4.66ms 6.66ms 148. 2.09MB 1.98
#> 2 dplyr_summarise 748.56ms 748.56ms 1.34 9.57MB 9.35
Joins
Joins work much the same way as in dplyr.
left <- flights |>
f_select(origin, dest, time_hour)
hours <- sample(unique(left$time_hour), 5000)
right <- as.data.frame(unclass(as.POSIXlt(hours)))
right$time_hour <- hours
# Left join
left |>
f_left_join(right)
#> # A tibble: 336,776 × 14
#> origin dest time_hour sec min hour mday mon year wday
#> * <chr> <chr> <dttm> <dbl> <int> <int> <int> <int> <int> <int>
#> 1 EWR IAH 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 2 LGA IAH 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 3 JFK MIA 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 4 JFK BQN 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 5 LGA ATL 2013-01-01 06:00:00 0 0 6 1 0 113 2
#> # ℹ 336,771 more rows
#> # ℹ 4 more variables: yday <int>, isdst <int>, zone <chr>, gmtoff <int>
# inner join
left |>
f_inner_join(right)
#> # A tibble: 244,029 × 14
#> origin dest time_hour sec min hour mday mon year wday
#> <chr> <chr> <dttm> <dbl> <int> <int> <int> <int> <int> <int>
#> 1 EWR IAH 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 2 LGA IAH 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 3 JFK MIA 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 4 JFK BQN 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 5 LGA ATL 2013-01-01 06:00:00 0 0 6 1 0 113 2
#> # ℹ 244,024 more rows
#> # ℹ 4 more variables: yday <int>, isdst <int>, zone <chr>, gmtoff <int>
# Anti join
left |>
f_anti_join(right)
#> # A tibble: 92,747 × 3
#> origin dest time_hour
#> <chr> <chr> <dttm>
#> 1 LGA ATL 2013-01-01 14:00:00
#> 2 LGA ATL 2013-01-01 14:00:00
#> 3 EWR ORD 2013-01-01 14:00:00
#> 4 EWR SEA 2013-01-01 14:00:00
#> 5 EWR ORD 2013-01-01 14:00:00
#> # ℹ 92,742 more rows
# Semi join
left |>
f_semi_join(right)
#> # A tibble: 244,029 × 3
#> origin dest time_hour
#> <chr> <chr> <dttm>
#> 1 EWR IAH 2013-01-01 05:00:00
#> 2 LGA IAH 2013-01-01 05:00:00
#> 3 JFK MIA 2013-01-01 05:00:00
#> 4 JFK BQN 2013-01-01 05:00:00
#> 5 LGA ATL 2013-01-01 06:00:00
#> # ℹ 244,024 more rows
# full join
left |>
f_full_join(right)
#> # A tibble: 336,776 × 14
#> origin dest time_hour sec min hour mday mon year wday
#> * <chr> <chr> <dttm> <dbl> <int> <int> <int> <int> <int> <int>
#> 1 EWR IAH 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 2 LGA IAH 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 3 JFK MIA 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 4 JFK BQN 2013-01-01 05:00:00 0 0 5 1 0 113 2
#> 5 LGA ATL 2013-01-01 06:00:00 0 0 6 1 0 113 2
#> # ℹ 336,771 more rows
#> # ℹ 4 more variables: yday <int>, isdst <int>, zone <chr>, gmtoff <int>
And a benchmark comparing fastplyr and dplyr joins
mark(
fastplyr_left_join = f_left_join(left, right, by = "time_hour"),
dplyr_left_join = left_join(left, right, by = "time_hour")
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_left_join 11.6ms 13.9ms 71.2 19.3MB 35.6
#> 2 dplyr_left_join 34.9ms 37.5ms 26.7 45MB 60.1
mark(
fastplyr_inner_join = f_inner_join(left, right, by = "time_hour"),
dplyr_inner_join = inner_join(left, right, by = "time_hour")
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_inner_join 8.57ms 12.4ms 81.9 22.2MB 45.5
#> 2 dplyr_inner_join 34.05ms 38ms 27.0 37.9MB 48.7
mark(
fastplyr_anti_join = f_anti_join(left, right, by = "time_hour"),
dplyr_anti_join = anti_join(left, right, by = "time_hour")
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_anti_join 2.47ms 4.06ms 240. 3.76MB 16.2
#> 2 dplyr_anti_join 16.66ms 19.25ms 50.6 21.8MB 30.4
mark(
fastplyr_semi_join = f_semi_join(left, right, by = "time_hour"),
dplyr_semi_join = semi_join(left, right, by = "time_hour")
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_semi_join 3.75ms 6.15ms 155. 7.8MB 17.9
#> 2 dplyr_semi_join 15.75ms 20.31ms 48.3 21.9MB 12.7
mark(
fastplyr_full_join = f_full_join(left, right, by = "time_hour"),
dplyr_full_join = full_join(left, right, by = "time_hour")
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_full_join 10.7ms 14.3ms 71.4 20.6MB 45.1
#> 2 dplyr_full_join 33.6ms 34.8ms 27.0 44.6MB 99.1
slice
f_slice
and other f_slice_
functions are very fast for many groups.
grouped_flights |>
f_slice(1)
#> # A tibble: 52,807 × 19
#> # Groups: carrier, tailnum, origin, dest [52,807]
#> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 7 614 615 -1 812 855
#> 2 2013 1 8 612 615 -3 901 855
#> 3 2013 1 9 615 615 0 NA 855
#> 4 2013 1 25 1530 1250 160 1714 1449
#> 5 2013 2 24 609 615 -6 835 855
#> # ℹ 52,802 more rows
#> # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> # hour <dbl>, minute <dbl>, time_hour <dttm>
grouped_flights |>
f_slice_head(3)
#> # A tibble: 125,770 × 19
#> # Groups: carrier, tailnum, origin, dest [52,807]
#> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 7 614 615 -1 812 855
#> 2 2013 1 13 612 615 -3 853 855
#> 3 2013 2 3 617 615 2 902 855
#> 4 2013 1 8 612 615 -3 901 855
#> 5 2013 1 22 614 615 -1 857 855
#> # ℹ 125,765 more rows
#> # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> # hour <dbl>, minute <dbl>, time_hour <dttm>
A quick benchmark to prove the point
mark(
fastplyr_slice = grouped_flights |>
f_slice_head(n = 3),
dplyr_slice = grouped_flights |>
slice_head(n = 3)
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_slice 28.14ms 31.57ms 29.2 21.4MB 7.79
#> 2 dplyr_slice 3.63s 3.63s 0.276 26.6MB 9.65
Group IDs
In dplyr to work with group IDs you must use the mutate()
+
cur_group_id()
paradigm.
In fastplyr you can just use add_group_id()
which is blazing fast.
## Unique ID for each group
grouped_flights |>
add_group_id() |>
f_select(group_id)
#> Adding missing grouping variables: 'carrier', 'tailnum', 'origin', 'dest'
#> # A tibble: 336,776 × 5
#> # Groups: carrier, tailnum, origin, dest [52,807]
#> carrier tailnum origin dest group_id
#> <chr> <chr> <chr> <chr> <int>
#> 1 UA N14228 EWR IAH 35951
#> 2 UA N24211 LGA IAH 36937
#> 3 AA N619AA JFK MIA 8489
#> 4 B6 N804JB JFK BQN 15462
#> 5 DL N668DN LGA ATL 20325
#> # ℹ 336,771 more rows
Another benchmark
mark(
fastplyr_group_id = grouped_flights |>
add_group_id() |>
f_select(all_of(group_vars(grouped_flights)), group_id),
dplyr_group_id = grouped_flights |>
mutate(group_id = cur_group_id()) |>
select(all_of(group_vars(grouped_flights)), group_id)
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_group_id 3.06ms 4.38ms 218. 1.46MB 3.93
#> 2 dplyr_group_id 303.6ms 306.89ms 3.26 3.24MB 9.78
expand
Based closely on tidyr::expand
, f_expand()
can cross joins multiple
vectors and data frames.
mark(
fastplyr_expand = flights |>
f_group_by(origin, tailnum) |>
f_expand(month = 1:12),
tidyr_expand = flights |>
group_by(origin, tailnum) |>
expand(month = 1:12),
check = FALSE
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_expand 19.83ms 21.95ms 43.5 8.86MB 5.94
#> 2 tidyr_expand 4.03s 4.03s 0.248 81.02MB 3.72
# Using `.cols` in `f_expand()` is very fast!
mark(
fastplyr_expand = flights |>
f_group_by(origin, dest) |>
f_expand(.cols = c("year", "month", "day")),
tidyr_expand = flights |>
group_by(origin, dest) |>
expand(year, month, day),
check = FALSE
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_expand 15.7ms 19.4ms 48.5 15.5MB 7.77
#> 2 tidyr_expand 233.7ms 254ms 3.94 66.7MB 3.94
duplicate rows
Finding duplicate rows is a very common dataset operation and there is a
dedicated function f_duplicates()
to do exactly this.
flights |>
f_duplicates(time_hour)
#> # A tibble: 329,840 × 1
#> time_hour
#> <dttm>
#> 1 2013-01-01 05:00:00
#> 2 2013-01-01 05:00:00
#> 3 2013-01-01 05:00:00
#> 4 2013-01-01 05:00:00
#> 5 2013-01-01 06:00:00
#> # ℹ 329,835 more rows
Benchmark against a common dplyr strategy for finding duplicates
mark(
fastplyr_duplicates = flights |>
f_duplicates(time_hour, .both_ways = TRUE, .add_count = TRUE, .keep_all = TRUE),
dplyr_duplicates = flights |>
add_count(time_hour) |>
filter(n > 1)
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_duplicates 24.8ms 26.7ms 37.2 45.1MB 28.9
#> 2 dplyr_duplicates 68.6ms 70.3ms 14.2 59.5MB 19.0
filter
In the worst-case scenarios, f_filter()
is about the same speed as
filter()
and in the best-case is much faster and more efficient. This
is especially true for large data where small subsets of the data are
returned.
full <- new_tbl(x = rnorm(5e07))
# A worst case scenario
mark(
fastplyr_filter = full |>
f_filter(abs(x) > 0),
dplyr_filter = full |>
filter(abs(x) > 0)
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_filter 648ms 648ms 1.54 1.12GB 1.54
#> 2 dplyr_filter 916ms 916ms 1.09 1.68GB 2.18
# Best case scenario - filter results in small subset
mark(
fastplyr_filter = full |>
f_filter(x > 4),
dplyr_filter = full |>
filter(x > 4)
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_filter 174ms 178ms 5.64 191MB 0
#> 2 dplyr_filter 509ms 509ms 1.96 763MB 1.96
bind rows and cols
Binding columns is particular much faster but binding rows is also sufficiently faster
mark(
fastplyr_bind_cols = f_bind_cols(grouped_flights, grouped_flights),
dplyr_bind_cols = suppressMessages(
bind_cols(grouped_flights, grouped_flights)
)
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_bind_cols 63.6µs 72.9µs 12902. 48.21KB 4.31
#> 2 dplyr_bind_cols 230.4ms 230.4ms 4.34 1.31MB 8.68
mark(
fastplyr_bind_rows = f_bind_rows(grouped_flights, grouped_flights),
dplyr_bind_rows = bind_rows(grouped_flights, grouped_flights)
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_bind_rows 59.2ms 60.2ms 16.4 86.6MB 0
#> 2 dplyr_bind_rows 233.1ms 233.1ms 4.29 157.6MB 4.29
Quantiles
A typical tidy approach might use a mixture of reframe()
and
enframe()
which is a perfectly tidy and neat solution
probs <- seq(0, 1, 0.25)
mtcars <- as_tbl(mtcars)
mtcars |>
group_by(cyl) |>
reframe(enframe(quantile(mpg, probs), "quantile", "mpg"))
#> # A tibble: 15 × 3
#> cyl quantile mpg
#> <dbl> <chr> <dbl>
#> 1 4 0% 21.4
#> 2 4 25% 22.8
#> 3 4 50% 26
#> 4 4 75% 30.4
#> 5 4 100% 33.9
#> # ℹ 10 more rows
fastplyr though has a dedicated function for quantile calculation,
tidy_quantiles()
which requires less code to type
# Wide
mtcars |>
tidy_quantiles(mpg, .by = cyl)
#> # A tibble: 3 × 6
#> cyl p0 p25 p50 p75 p100
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 4 21.4 22.8 26 30.4 33.9
#> 2 6 17.8 18.6 19.7 21 21.4
#> 3 8 10.4 14.4 15.2 16.2 19.2
# Long
mtcars |>
tidy_quantiles(mpg, .by = cyl, pivot = "long")
#> # A tibble: 15 × 3
#> cyl .quantile mpg
#> <dbl> <fct> <dbl>
#> 1 4 p0 21.4
#> 2 4 p25 22.8
#> 3 4 p50 26
#> 4 4 p75 30.4
#> 5 4 p100 33.9
#> # ℹ 10 more rows
Not only can you choose how to pivot as shown above, you can also calculate quantiles for multiple variables.
multiple_quantiles <- mtcars |>
tidy_quantiles(across(where(is.numeric)), pivot = "long")
multiple_quantiles
#> # A tibble: 5 × 12
#> .quantile mpg cyl disp hp drat wt qsec vs am gear carb
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 p0 10.4 4 71.1 52 2.76 1.51 14.5 0 0 3 1
#> 2 p25 15.4 4 121. 96.5 3.08 2.58 16.9 0 0 3 2
#> 3 p50 19.2 6 196. 123 3.70 3.32 17.7 0 0 4 2
#> 4 p75 22.8 8 326 180 3.92 3.61 18.9 1 1 4 4
#> 5 p100 33.9 8 472 335 4.93 5.42 22.9 1 1 5 8
# Quantile names is a convenient factor
multiple_quantiles$.quantile
#> [1] p0 p25 p50 p75 p100
#> Levels: p0 p25 p50 p75 p100
Quantile benchmark for many groups
tidy_quantiles()
of course is fast when many groups are involved.
mark(
fastplyr_quantiles = flights |>
f_group_by(year, month, day, origin) |>
tidy_quantiles(dep_delay, pivot = "long"),
dplyr_quantiles = flights |>
group_by(year, month, day, origin) |>
reframe(enframe(quantile(dep_delay, seq(0, 1, 0.25), na.rm = TRUE))),
check = FALSE
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_quantiles 26.1ms 26.5ms 37.1 7.17MB 0
#> 2 dplyr_quantiles 214.3ms 218.7ms 4.56 24.98MB 4.56
tidytable vs fastplyr
Let’s run some more benchmarks for fun, this time including tidytable which fastplyr is very similar to as it also uses a tidy frontend but a data.table backend
10 million rows
n_rows <- 10^7
n_groups <- 10^6
tbl <- new_tbl(x = rnorm(n_rows))
tbl <- tbl |>
mutate(y = as.character(round(x, 6)),
g = sample.int(n_groups, n_rows, TRUE))
tbl
#> # A tibble: 10,000,000 × 3
#> x y g
#> <dbl> <chr> <int>
#> 1 1.29 1.285351 433366
#> 2 -1.61 -1.613842 887462
#> 3 -0.787 -0.787209 550879
#> 4 -0.490 -0.489809 875660
#> 5 0.393 0.393453 550619
#> # ℹ 9,999,995 more rows
slice benchmark
For this we will be using the .by
argument from each package. Because
fastplyr still sorts the groups by default here we will set an internal
option to use the alternative grouping algorithm that sorts groups by
order of first appearance. This will likely be revisited at some point.
To read about the differences, see ?collapse::GRP
.
library(tidytable)
#> Warning: tidytable was loaded after dplyr.
#> This can lead to most dplyr functions being overwritten by tidytable functions.
#> Warning: tidytable was loaded after tidyr.
#> This can lead to most tidyr functions being overwritten by tidytable functions.
#>
#> Attaching package: 'tidytable'
#> The following objects are masked from 'package:fastplyr':
#>
#> crossing, desc, nesting
#> The following objects are masked from 'package:dplyr':
#>
#> across, add_count, add_tally, anti_join, arrange, between,
#> bind_cols, bind_rows, c_across, case_match, case_when, coalesce,
#> consecutive_id, count, cross_join, cume_dist, cur_column, cur_data,
#> cur_group_id, cur_group_rows, dense_rank, desc, distinct, filter,
#> first, full_join, group_by, group_cols, group_split, group_vars,
#> if_all, if_any, if_else, inner_join, is_grouped_df, lag, last,
#> lead, left_join, min_rank, mutate, n, n_distinct, na_if, nest_by,
#> nest_join, nth, percent_rank, pick, pull, recode, reframe,
#> relocate, rename, rename_with, right_join, row_number, rowwise,
#> select, semi_join, slice, slice_head, slice_max, slice_min,
#> slice_sample, slice_tail, summarise, summarize, tally, top_n,
#> transmute, tribble, ungroup
#> The following objects are masked from 'package:purrr':
#>
#> map, map_chr, map_dbl, map_df, map_dfc, map_dfr, map_int, map_lgl,
#> map_vec, map2, map2_chr, map2_dbl, map2_df, map2_dfc, map2_dfr,
#> map2_int, map2_lgl, map2_vec, pmap, pmap_chr, pmap_dbl, pmap_df,
#> pmap_dfc, pmap_dfr, pmap_int, pmap_lgl, pmap_vec, walk
#> The following objects are masked from 'package:tidyr':
#>
#> complete, crossing, drop_na, expand, expand_grid, extract, fill,
#> nest, nesting, pivot_longer, pivot_wider, replace_na, separate,
#> separate_longer_delim, separate_rows, separate_wider_delim,
#> separate_wider_regex, tribble, uncount, unite, unnest,
#> unnest_longer, unnest_wider
#> The following objects are masked from 'package:tibble':
#>
#> enframe, tribble
#> The following objects are masked from 'package:stats':
#>
#> dt, filter, lag
#> The following object is masked from 'package:base':
#>
#> %in%
tidy_tbl <- as_tidytable(tbl)
# Setting an internal option to set all grouping to use the non-sorted type
options(.fastplyr.order.groups = FALSE)
mark(
fastplyr_slice = tbl |>
f_slice(3:5, .by = g),
tidytable_slice = tidy_tbl |>
slice(3:5, .by = g),
check = FALSE,
min_iterations = 3
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_slice 816.62ms 849.03ms 1.15 133MB 0.383
#> 2 tidytable_slice 6.39s 6.56s 0.153 176MB 1.74
slice_head & slice_tail
mark(
fastplyr_slice_head = tbl |>
f_slice_head(n = 3, .by = g),
tidytable_slice_head = tidy_tbl |>
slice_head(n = 3, .by = g),
fastplyr_slice_tail = tbl |>
f_slice_tail(n = 3, .by = g),
tidytable_slice_tail = tidy_tbl |>
slice_tail(n = 3, .by = g),
check = FALSE,
min_iterations = 3
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 4 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_slice_head 776.69ms 782.24ms 1.26 191MB 0
#> 2 tidytable_slice_head 1.59s 1.61s 0.609 175MB 1.42
#> 3 fastplyr_slice_tail 732.95ms 784.14ms 1.25 194MB 0.415
#> 4 tidytable_slice_tail 3.39s 3.5s 0.277 175MB 1.57
summarise benchmark
Here we’ll calculate the mean of x by each group of g
Both tidytable and fastplyr have optimisations for mean()
when it
involves groups. tidytable internally uses data.table’s ‘gforce’ mean
function. This is basically a dedicated C function to calculate means
for many groups.
mark(
fastplyr_sumarise = tbl |>
f_summarise(mean = mean(x), .by = g),
tidytable_sumarise = tidy_tbl |>
summarise(mean = mean(x), .by = g, .sort = FALSE),
check = FALSE,
min_iterations = 3
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_sumarise 290ms 322ms 3.18 57.2MB 0
#> 2 tidytable_sumarise 265ms 270ms 3.71 305.4MB 1.85
Benchmarking more statistical functions
mark(
fastplyr_sumarise2 = tbl |>
f_summarise(n = n(), mean = mean(x), min = min(x), max = max(x), .by = g),
tidytable_sumarise2 = tidy_tbl |>
summarise(n = n(), mean = mean(x), min = min(x), max = max(x),
.by = g, .sort = FALSE),
check = FALSE,
min_iterations = 3
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_sumarise2 483ms 520ms 1.93 72.5MB 0
#> 2 tidytable_sumarise2 401ms 435ms 2.30 320.7MB 1.15
count benchmark
mark(
fastplyr_count = tbl |>
f_count(y, g),
tidytable_count = tidy_tbl |>
count(y, g),
check = FALSE,
min_iterations = 3
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 fastplyr_count 348.29ms 348.31ms 2.87 229MB 1.44
#> 2 tidytable_count 3.77s 3.77s 0.265 496MB 0.530
It’s clear both fastplyr and tidytable are fast and each have their strengths and weaknesses.