Learn R Programming

fda (version 1.2.3)

linmod: Fit Fully Functional Linear Model

Description

A functional dependent variable is approximated by a single functional covariate, and the covariate can affect the dependent variable for all values of its argument. The regression function is a bivariate function.

Usage

linmod(xfdobj, yfdobj, wtvec=rep(1,nrep),
       xLfdobj=int2Lfd(2), yLfdobj=int2Lfd(2),
       xlambda=0, ylambda=0)

Arguments

xfdobj
a functional data object for the covariate
yfdobj
a functional data object for the dependent variable
wtvec
a vector of weights for each observation.
xLfdobj
either a nonnegative integer or a linear differential operator object. This operator is applied to the regression function's first argument.
yLfdobj
either a nonnegative integer or a linear differential operator object. This operator is applied to the regression function's second argument.
xlambda
a smoothing parameter for the first argument of the regression function.
ylambda
a smoothing parameter for the second argument of the regression function.

Value

  • a named list of length 3 with the following entries:
  • alphafdthe intercept functional data object.
  • regfda bivariate functional data object for the regression function.
  • yhatfda functional data object for the approximation to the dependent variable defined by the linear model, if the dependent variable is functional. Otherwise the matrix of approximate values.

See Also

fRegress

Examples

Run this code
#See the prediction of precipitation using temperature as
#the independent variable in the analysis of the daily weather
#data.

Run the code above in your browser using DataLab