lmeControl() call replace the
defaults, and a list with all settings (i.e., values for
all possible arguments) is returned. The returned list is
used as the control argument to the lme function.lmeControl(maxIter = 50, msMaxIter = 50, tolerance = 1e-6, niterEM = 25,
msMaxEval = 200,
msTol = 1e-7, msVerbose = FALSE,
returnObject = FALSE, gradHess = TRUE, apVar = TRUE,
.relStep = .Machine$double.eps^(1/3), minAbsParApVar = 0.05,
opt = c("nlminb", "optim"),
optimMethod = "BFGS", natural = TRUE,
sigma = NULL, …)lme
optimization algorithm. Default is 50.lme optimization.
Default is 50.lme algorithm. Default is 1e-6.25.200.optim is used. Default is 1e-7.FALSE.corStruct) and the variance
function structure (varFunc) have no "varying" parameters and
the pdMat classes used in the random effects structure are
pdSymm (general positive-definite), pdDiag (diagonal),
pdIdent (multiple of the identity), or
pdCompSymm (compound symmetry). Default is TRUE.TRUE..Machine$double.eps^(1/3).optim optimizer. The default is
"BFGS". An alternative is "L-BFGS-B".0.05.pdNatural
parametrization should be used for general positive-definite matrices
(pdSymm) in reStruct, when the approximate covariance
matrix of the estimators is calculated. Default is TRUE.NULL, as by default, or 0, sigma is estimated.lme, nlminb, optim# decrease the maximum number iterations in the ms call and
# request that information on the evolution of the ms iterations be printed
str(lCtr <- lmeControl(msMaxIter = 20, msVerbose = TRUE))
## This should always work:
do.call(lmeControl, lCtr)
Run the code above in your browser using DataLab