paraep4
. The first four L-moments of the distribution are complex.The mean $\lambda_1$ is
$$\lambda_1 = \xi + \alpha(1/\kappa - \kappa)\frac{\Gamma(2/h)}{\Gamma(1/h)}$$
where $\Gamma(x)$ is the complete gamma function or gamma()
in R.
The L-scale $\lambda_2$ is
$$\lambda_2 = -\frac{\alpha\kappa(1/\kappa - \kappa)^2\Gamma(2/h)} {(1+\kappa^2)\Gamma(1/h)} + 2\frac{\alpha\kappa^2(1/\kappa^3 + \kappa^3)\Gamma(2/h)I_{1/2}(1/h,2/h)} {(1+\kappa^2)^2\Gamma(1/h)}$$
where $I_{1/2}(1/h,2/h)$ is the cumulative distribution function of the beta distribution ($I_x(a,b)$) or pbeta(1/2, shape1=1/h, shape2=2/h)
in R. This function is also referred to as the normalized incomplete beta function (Delicado and Goria, 2008) and defined as
$$I_x(a,b) = \frac{\int_0^x t^{a-1} (1-t)^{b-1}\; \mathrm{d}t}{\beta(a,b)}$$
where $\beta(1/h, 2/h)$ is the complete beta function or beta(1/h, 2/h)
in R.
The third L-moment $\lambda_3$ is
$$\lambda_3 = A_1 + A_2 + A_3$$
where the $A_i$ are
$$A_1 = \frac{\alpha(1/\kappa - \kappa)(\kappa^4 - 4\kappa^2 + 1)\Gamma(2/h)} {(1+\kappa^2)^2\Gamma(1/h)}$$
$$A_2 = -6\frac{\alpha\kappa^3(1/\kappa - \kappa)(1/\kappa^3 + \kappa^3)\Gamma(2/h)I_{1/2}(1/h,2/h)} {(1+\kappa^2)^3\Gamma(1/h)}$$
$$A_3 = 6\frac{\alpha(1+\kappa^4)(1/\kappa - \kappa)\Gamma(2/h)\Delta} {(1+\kappa^2)^2\Gamma(1/h)}$$
and where $\Delta$ is
$$\Delta = \frac{1}{\beta(1/h, 2/h)}\int_0^{1/2} t^{1/h - 1} (1-t)^{2/h - 1} I_{(1-t)/(2-t)}(1/h, 3/h) \; \mathrm{d}t$$
The fourth L-moment $\lambda_4$ is
$$\lambda_4 = B_1 + B_2 + B_3 + B_4$$
where the $B_i$ are
$$B_1 = -\frac{\alpha\kappa(1/\kappa - \kappa)^2(\kappa^4 - 8\kappa^2 + 1)\Gamma(2/h)} {(1+\kappa^2)^3\Gamma(1/h)}$$
$$B_2 = 12\frac{\alpha\kappa^2(\kappa^3 + 1/\kappa^3)(\kappa^4 - 3\kappa^2 + 1)\Gamma(2/h)I_{1/2}(1/h,2/h)} {(1+\kappa^2)^4\Gamma(1/h)}$$
$$B_3 = -30\frac{\alpha\kappa^3(1/\kappa - \kappa)^2(1/\kappa^2 + \kappa^2)\Gamma(2/h)\Delta} {(1+\kappa^2)^3\Gamma(1/h)}$$
$$B_4 = 20\frac{\alpha\kappa^4(1/\kappa^5 + \kappa^5)\Gamma(2/h)\Delta_1} {(1+\kappa^2)^4\Gamma(1/h)}$$
and where $\Delta_1$ is
$$\Delta_1 = \frac{\int_0^{1/2} \int_0^{(1-y)/(2-y)} y^{1/h - 1} (1-y)^{2/h - 1} z^{1/h - 1} (1-z)^{3/h - 1} \;I'\; \mathrm{d}z\,\mathrm{d}y}{\beta(1/h, 2/h)\beta(1/h, 3/h)}$$
for which $I' = I_{(1-z)(1-y)/(1+(1-z)(1-y))}(1/h, 2/h)$ is the cumulative distribution function of the beta distribution ($I_x(a,b)$) or pbeta((1-z)(1-y)/(1+(1-z)(1-y)), shape1=1/h, shape2=2/h)
in R.
lmomaep4(para, paracheck=TRUE, t3t4only=FALSE)
are.paraep4.valid
function.t3t4only=TRUE
paraep4
, quaaep4
, cdfaep4
para <- vec2par(c(0, 1, 0.5, 4), type="aep4")
lmomaep4(para)
Run the code above in your browser using DataLab