Data & AI Literacy Month
Hear from leaders powering AI transformation

lmomco (version 1.7.3)

lmomgld: L-moments of the Generalized Lambda Distribution

Description

This function estimates the L-moments of the Generalized Lambda distribution given the parameters ($\xi$, $\alpha$, $\kappa$, and $h$) from vec2par. The L-moments in terms of the parameters are complicated; however, there are analytical solutions. There are no simple expressions of the parameters in terms of the L-moments. The first L-moment or the mean of the distribution is

λ1=ξ+α(1κ+11h+1).

The second L-moment or L-scale in terms of the parameters and the mean is

λ2=ξ+2α(κ+2)2α(1h+11h+2)ξ.

The third L-moment in terms of the parameters, the mean, and L-scale is

\boldmath Y=2ξ+6α(κ+3)3(α+ξ)+ξ and λ3=\boldmath Y+6α(2h+21h+31h+1).

The fourth L-moment in termes of the parameters and the first three L-moments is

\boldmath Y=3h+4(2h+21h+31h+1), \boldmath Z=20ξ4+20α(κ+4)20\boldmath Yα, and λ4=\boldmath Z5(κ+3(α+ξ)ξ)+6(α+ξ)ξ.

It is conventional to express L-moments in terms of only the parameters and not the other L-moments. Lengthy algebra and further manipulation yields such a system of equations. The L-moments of the distribution are

λ1=ξ+α(1κ+11h+1),

λ2=α(κ(κ+2)(κ+1)+h(h+2)(h+1)),

λ3=α(κ(κ1)(κ+3)(κ+2)(κ+1)h(h1)(h+3)(h+2)(h+1)), and

λ4=α(κ(κ2)(κ1)(κ+4)(κ+3)(κ+2)(κ+1)+h(h2)(h1)(h+4)(h+3)(h+2)(h+1)).

The L-moment ratios are

τ3=κ(κ1)(h+3)(h+2)(h+1)h(h1)(κ+3)(κ+2)(κ+1)(κ+3)(h+3)×[κ(h+2)(h+1)+h(κ+2)(κ+1)] and

τ4=κ(κ2)(κ1)(h+4)(h+3)(h+2)(h+1)+h(h2)(h1)(κ+4)(κ+3)(κ+2)(κ+1)(κ+4)(h+4)(κ+3)(h+3)×[κ(h+2)(h+1)+h(κ+2)(κ+1)].

The pattern being established through symmetry, even higher L-moment ratios are readily obtained. Note the alternating substraction and addition of the two terms in the numerator of the L-moment ratios ($\tau_r$). For odd $r \ge 3$ substraction is seen and for even $r \ge 3$ addition is seen. For example, the fifth L-moment ratio is

N1=κ(κ3)(κ2)(κ1)(h+5)(h+4)(h+3)(h+2)(h+1), N2=h(h3)(h2)(h1)(κ+5)(κ+4)(κ+3)(κ+2)(κ+1), D1=(κ+5)(h+5)(κ+4)(h+4)(κ+3)(h+3), D2=[κ(h+2)(h+1)+h(κ+2)(κ+1)], and τ5=N1N2D1×D2.

By inspection the $\tau_r$ equations are not applicable for negative integer values $k={-1, -2, -3, -4, \dots }$ and $h={-1, -2, -3, -4, \dots }$ as division by zero will result. There are additional, but difficult to formulate, restrictions on the parameters both to define a valid Generalized Lambda distribution as well as valid L-moments. Verification of the parameters is conducted through are.pargld.valid, and verification of the L-moment validity is conducted through are.lmom.valid.

Usage

lmomgld(para)

Arguments

para
The parameters of the distribution.

Value

  • An R list is returned.
  • lambdasVector of the TL-moments. First element is $\lambda^{(1)}_1$, second element is $\lambda^{(1)}_2$, and so on.
  • ratiosVector of the TL-moment ratios. Second element is $\tau^{(1)}$, third element is $\tau^{(1)}_3$ and so on.
  • trimTrim level = 0
  • leftrimLeft trimming level = 0
  • rightrimRight trimming level = 0
  • sourceAn attribute identifying the computational source of the TL-moments: lmomgld.

source

Derivations conducted by W.H. Asquith on February 11 and 12, 2006.

References

Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, vol. 52, p. 105--124.

Karvanen, J., Eriksson, J., and Koivunen, V., 2002, Adaptive score functions for maximum likelihood ICA: Journal of VLSI Signal Processing, vol. 32, p. 82--92.

Karian, Z.A., and Dudewicz, E.J., 2000, Fitting statistical distibutions---The generalized lambda distribution and generalized bootstrap methods: CRC Press, Boca Raton, FL, 438 p.

See Also

pargld, cdfgld, quagld

Examples

Run this code
lmomgld(vec2par(c(10,10,0.4,1.3),type='gld'))

PARgld <- vec2par(c(0,1,1,.5), type="gld")
theoTLmoms(PARgld, nmom=6)
lmomgld(PARgld)

Run the code above in your browser using DataLab