parkmu
. The L-moments in terms of the parameters are complex. They are computed here by the $\alpha_r$ probability-weighted moments in terms of the Marcum Q-function (see cdfkmu
). The conventional linear combination relating the L-moments to the $\beta_r$ probability-weighted moments is
Yacoub (2007, eq. 5) provides an expectation for the $j$th moment of the distribution as given by
lmomkmu
function optionally solves for the mean ($j=1$) using the above equation in conjunction with the mean as computed by the order statistic minimums. The ${}_1F_1(a;b;z)$ is defined as
lmomkmu(para, nmom=5, paracheck=TRUE, tol=1E-6, maxn=100)
list
is returned.NULL
until trimming support is made.NULL
until trimming support is made.NULL
until trimming support is made.parkmu
, quakmu
, cdfkmu
, pwm2lmom
, pwm.alpha2beta
kmu <- vec2par(c(1.19,2.3), type="kmu")
lmomkmu(kmu)
par <- vec2par(c(1.67, .5), type="kmu")
lmomkmu(par)$lambdas
cdf2lmoms(par, nmom=4)$lambdas
system.time(lmomkmu(par))
system.time(cdf2lmoms(par, nmom=4))
# See the examples under lmomemu() so visualize L-moment
# relations on the L-skew and L-kurtosis diagram
Run the code above in your browser using DataLab