parkmu
. The L-moments in terms of the parameters are complex. They are computed here by the $\alpha_r$ probability-weighted moments in terms of the Marcum Q-function (see cdfkmu
). The conventional linear combination relating the L-moments to the $\beta_r$ probability-weighted moments is
$$\lambda_{r+1} = \sum_{k=0}^{r} (-1)^{r-k} {r \choose k} { r + k \choose k } \beta_k$$
for $r \ge 0$ and the linear combination relating $\alpha_r$ to $\beta_r$ is
$$\alpha_r = \sum_{k=0}^r (-1)^k { r \choose k } \beta_k$$
and by definition the $\alpha_r$ are the expectations
$$\alpha_r \equiv E{ X\,[1-F(X)]^r}$$
and thus
$$\alpha_r = \int_{-\infty}^{\infty} x\, [1 - F(x)]^r f(x)\; \mathrm{d}x$$
in terms of $x$, the PDF $f(x)$, and the CDF $F(x)$. Lastly, the $\alpha_r$ for the Eta-Mu distribution with substitutions of the Marcum Q-function
$$\alpha_r = \int_{-\infty}^{\infty} Q_\mu\biggl(\sqrt{2\kappa\mu},\; x\sqrt{2(1+\kappa)\mu}\biggr)^r\,x\, f(x)\; \mathrm{d}x$$
Yacoub (2007, eq. 5) provides an expectation for the $j$th moment of the distribution as given by
$$\mathrm{E}(x^j) = \frac{\Gamma(\mu+j/2)\mathrm{exp}(-\kappa\mu)}{\Gamma(\mu)[(1+\kappa)\mu]^{j/2}} \times {}_1F_1(\mu+j/2; \mu; \kappa\mu)$$
where ${}_1F_1(a;b;z)$ is the confluent hypergeometric function of Abramowitz and Stegun (1972, eq. 13.1.2). The lmomkmu
function optionally solves for the mean ($j=1$) using the above equation in conjunction with the mean as computed by the order statistic minimums. The ${}_1F_1(a;b;z)$ is defined as
$${}_1F_1(a;b;z) = \sum_{i=0}^\infty \frac{a^{(i)}}{b^{(i)}}\frac{z^i}{n!}$$
where the notation $a^{(n)}$ represents
lmomkmu(para, nmom=5, paracheck=TRUE, tol=1E-6, maxn=100)
list
is returned.NULL
until trimming support is made.NULL
until trimming support is made.NULL
until trimming support is made.parkmu
, quakmu
, cdfkmu
, pwm2lmom
, pwm.alpha2beta
kmu <- vec2par(c(1.19,2.3), type="kmu")
lmomkmu(kmu)
par <- vec2par(c(1.67, .5), type="kmu")
lmomkmu(par)$lambdas
cdf2lmoms(par, nmom=4)$lambdas
system.time(lmomkmu(par))
system.time(cdf2lmoms(par, nmom=4))
# See the examples under lmomemu() so visualize L-moment
# relations on the L-skew and L-kurtosis diagram
Run the code above in your browser using DataLab