## Not run:
# lmomrice(vec2par(c(65,34), type="rice"))
#
# # Use the additional arguments to show how to avoid unnecessary overhead
# # when using the Rice, which only has two parameters.
# rice <- vec2par(c(15,14), type="rice")
# system.time(lmomrice(rice, nmom=2)); system.time(lmomrice(rice, nmom=6))
#
# lcvs <- vector(mode="numeric"); i <- 0
# SNR <- c(seq(7,0.25, by=-0.25), 0.1)
# for(snr in SNR) {
# i <- i + 1
# rice <- vec2par(c(10,10/snr), type="rice")
# lcvs[i] <- lmomrice(rice, nmom=2)$ratios[2]
# }
# plot(lcvs, SNR,
# xlab="COEFFICIENT OF L-VARIATION",
# ylab="LOCAL SIGNAL TO NOISE RATIO (NU/ALPHA)")
# lines(.lmomcohash$RiceTable$LCV,
# .lmomcohash$RiceTable$SNR)
# abline(1,0, lty=2)
# mtext("Rice Distribution")
# text(0.15,0.5, "More noise than signal")
# text(0.15,1.5, "More signal than noise")
# ## End(Not run)
## Not run:
# # A polynomial expression for the relation between L-skew and
# # L-kurtosis for the Rice distribution can be readily constructed.
# T3 <- .lmomcohash$RiceTable$TAU3
# T4 <- .lmomcohash$RiceTable$TAU4
# LM <- lm(T4~T3+I(T3^2)+I(T3^3)+I(T3^4)+
# I(T3^5)+I(T3^6)+I(T3^7)+I(T3^8))
# summary(LM) # note shown## End(Not run)
Run the code above in your browser using DataLab