# NOT RUN {
lmomrice(vec2par(c(65,34), type="rice"))
# Use the additional arguments to show how to avoid unnecessary overhead
# when using the Rice, which only has two parameters.
rice <- vec2par(c(15,14), type="rice")
system.time(lmomrice(rice, nmom=2)); system.time(lmomrice(rice, nmom=6))
lcvs <- vector(mode="numeric"); i <- 0
SNR <- c(seq(7,0.25, by=-0.25), 0.1)
for(snr in SNR) {
i <- i + 1
rice <- vec2par(c(10,10/snr), type="rice")
lcvs[i] <- lmomrice(rice, nmom=2)$ratios[2]
}
plot(lcvs, SNR,
xlab="COEFFICIENT OF L-VARIATION",
ylab="LOCAL SIGNAL TO NOISE RATIO (NU/ALPHA)")
lines(.lmomcohash$RiceTable$LCV,
.lmomcohash$RiceTable$SNR)
abline(1,0, lty=2)
mtext("Rice Distribution")
text(0.15,0.5, "More noise than signal")
text(0.15,1.5, "More signal than noise")
# }
# NOT RUN {
# A polynomial expression for the relation between L-skew and
# L-kurtosis for the Rice distribution can be readily constructed.
T3 <- .lmomcohash$RiceTable$TAU3
T4 <- .lmomcohash$RiceTable$TAU4
LM <- lm(T4~T3+I(T3^2)+I(T3^3)+I(T3^4)+
I(T3^5)+I(T3^6)+I(T3^7)+I(T3^8))
summary(LM) # note shown
# }
Run the code above in your browser using DataLab