data(stackloss)
X <- model.matrix(stack.loss ~ . , data = stackloss)
y <- stack.loss
## Compute manual MM-estimate:
## 1) initial LTS:
m0 <- ltsReg(X[,-1], y)
## 2) M-estimate started from LTS:
m1 <- lmrob..M..fit(X, y, beta.initial = coef(m0),
scale = m0$scale, c.psi = 1.6,
control = lmrob.control())
cbind(m0$coef, m1$coef)
## the scale is kept fixed:
stopifnot(identical(unname(m0$scale), m1$scale))
## robustness weights: are
r.s <- with(m1, resid/scale) # scaled residuals
m1.wts <- robustbase:::tukeyPsi1(r.s, cc = 1.6) / r.s
summarizeRobWeights(m1.wts)
##--> outliers 1,3,4,13,21
which(m0$lts.wt == 0) # 1,3,4,21 but not 13
Run the code above in your browser using DataLab