
Last chance! 50% off unlimited learning
Sale ends in
Generics and methods for extracting quantities needed for plotting from various types of model objects. Currently methods are only provided for stanfit (rstan) and stanreg (rstanarm) objects, but adding new methods should be relatively straightforward.
log_posterior(object, ...)nuts_params(object, ...)
rhat(object, ...)
neff_ratio(object, ...)
# S3 method for stanfit
log_posterior(object, inc_warmup = FALSE, ...)
# S3 method for stanreg
log_posterior(object, inc_warmup = FALSE, ...)
# S3 method for stanfit
nuts_params(object, pars = NULL, inc_warmup = FALSE, ...)
# S3 method for stanreg
nuts_params(object, pars = NULL, inc_warmup = FALSE, ...)
# S3 method for list
nuts_params(object, pars = NULL, ...)
# S3 method for stanfit
rhat(object, pars = NULL, ...)
# S3 method for stanreg
rhat(object, pars = NULL, regex_pars = NULL, ...)
# S3 method for stanfit
neff_ratio(object, pars = NULL, ...)
# S3 method for stanreg
neff_ratio(object, pars = NULL, regex_pars = NULL, ...)
The object to use.
Arguments passed to individual methods.
A logical scalar (defaulting to FALSE
) indicating
whether to include warmup draws, if applicable.
An optional character vector of parameter names. For
nuts_params
these will be NUTS sampler parameter names rather than
model parameters. If pars
is omitted all parameters are included.
An optional regular expression to use for
parameter selection. Can be specified instead of pars
or in addition
to pars
.
log_posterior
log_posterior
methods return a molten data frame (see
melt
). The data frame should have columns
"Iteration"
(integer), "Chain"
(integer), and "Value"
(numeric). See Examples, below.
nuts_params
nuts_params
methods return a molten data frame (see
melt
). The data frame should have columns
"Parameter"
(factor), "Iteration"
(integer), "Chain"
(integer), and "Value"
(numeric). See Examples, below.
rhat
, neff_ratio
Methods return (named) vectors.
# NOT RUN {
library(rstanarm)
fit <- stan_glm(mpg ~ wt, data = mtcars)
np <- nuts_params(fit)
head(np)
tail(np)
lp <- log_posterior(fit)
head(lp)
tail(lp)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab