
Last chance! 50% off unlimited learning
Sale ends in
logit(theta, earg = list(), inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)
elogit(theta, earg = list(min=0, max=1), inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)
theta
which are less than or equal to 0 can be
replaced by the bvalue
component of the list earg
before computing the link functionTRUE
the inverse function is computed.
The inverse logit function is known as the expit function.blurb
slot of a
vglmff-class
object.initialize
slot of a vglmff-class
object.
Contains a little more information if TRUE
.logit
with deriv = 0
, the logit of theta
, i.e.,
log(theta/(1-theta))
when inverse = FALSE
,
and if inverse = TRUE
then
exp(theta)/(1+exp(theta))
. For deriv = 1
, then the function returns
d theta
/ d eta
as a function of theta
if inverse = FALSE
,
else if inverse = TRUE
then it returns the reciprocal.
Here, all logarithms are natural logarithms, i.e., to base e.
theta
close to 0 or 1 or out of range
result in
Inf
, -Inf
, NA
or NaN
. The extended logit link function elogit
should be used
more generally for parameters that lie in the interval $(A,B)$, say.
The formula is
theta
close to $A$ or $B$ or out of range
result in
Inf
, -Inf
, NA
or NaN
.
However these can be replaced by values $bminvalue$ and
$bmaxvalue$ first before computing the link function.
The arguments short
and tag
are used only if
theta
is character.
Links
,
probit
,
cloglog
,
cauchit
,
loge
.p = seq(0.01, 0.99, by=0.01)
logit(p)
max(abs(logit(logit(p), inverse=TRUE) - p)) # Should be 0
p = c(seq(-0.02, 0.02, by=0.01), seq(0.97, 1.02, by=0.01))
logit(p) # Has NAs
logit(p, earg=list(bvalue= .Machine$double.eps)) # Has no NAs
p = seq(0.9, 2.2, by=0.1)
elogit(p, earg=list(min=1, max=2,
bminvalue = 1 + .Machine$double.eps,
bmaxvalue = 2 - .Machine$double.eps)) # Has no NAs
par(mfrow=c(2,2))
y = seq(-4, 4, length=100)
for(d in 0:1) {
matplot(p, cbind(logit(p, deriv=d), probit(p, deriv=d)),
type="n", col="purple", ylab="transformation",
lwd=2, las=1,
main=if(d==0) "Some probability link functions"
else "First derivative")
lines(p, logit(p, deriv=d), col="limegreen", lwd=2)
lines(p, probit(p, deriv=d), col="purple", lwd=2)
lines(p, cloglog(p, deriv=d), col="chocolate", lwd=2)
lines(p, cauchit(p, deriv=d), col="tan", lwd=2)
if(d==0) {
abline(v=0.5, h=0, lty="dashed")
legend(0, 4.5, c("logit", "probit", "cloglog", "cauchit"),
col=c("limegreen","purple","chocolate", "tan"), lwd=2)
} else
abline(v=0.5, lty="dashed")
}
for(d in 0) {
matplot(y, cbind(logit(y, deriv=d, inverse=TRUE),
probit(y, deriv=d, inverse=TRUE)),
type="n", col="purple", xlab="transformation", ylab="p",
lwd=2, las=1,
main=if(d==0) "Some inverse probability link functions"
else "First derivative")
lines(y, logit(y, deriv=d, inverse=TRUE), col="limegreen", lwd=2)
lines(y, probit(y, deriv=d, inverse=TRUE), col="purple", lwd=2)
lines(y, cloglog(y, deriv=d, inverse=TRUE), col="chocolate", lwd=2)
lines(y, cauchit(y, deriv=d, inverse=TRUE), col="tan", lwd=2)
if(d==0) {
abline(h=0.5, v=0, lty="dashed")
legend(-4, 1, c("logit", "probit", "cloglog", "cauchit"),
col=c("limegreen","purple","chocolate", "tan"), lwd=2)
}
}
p = seq(0.21, 0.59, by=0.01)
plot(p, elogit(p, earg=list(min=0.2, max=0.6)), lwd=2,
type="l", col="black", ylab="transformation", xlim=c(0,1),
las=1, main="elogit(p, earg=list(min=0.2, max=0.6)")
Run the code above in your browser using DataLab