## GENERATION OF VECTORS OF RESPONSES
# NOTE THE USUAL PARAMETRIZATION OF THE ITEM DISCRIMINATION,
# THE VALUE OF THE PERSONNAL FLUCTUATION FIXED AT 0,
# AND THE VALUE OF THE PERSONNAL PSEUDO-GUESSING FIXED AT 0.30.
# IT COULD BE TYPICAL OF PLAGIARISM BEHAVIOR.
nItems <- 40
a <- rep(1.702,nItems); b <- seq(-5,5,length=nItems)
c <- rep(0,nItems); d <- rep(1,nItems)
nSubjects <- 1; rep <- 100
theta <- seq(-1,-1,length=nSubjects)
S <- runif(n=nSubjects,min=0.0,max=0.0)
C <- runif(n=nSubjects,min=0.3,max=0.3)
D <- runif(n=nSubjects,min=0.0,max=0.0)
set.seed(seed = 100)
X <- ggrm4pl(n=nItems, rep=rep,
theta=theta, S=S, C=C, D=D,
s=1/a, b=b,c=c,d=d)
## Results for each subjects for each models
essai <- m4plModelShow(X, b=b, s=1/a, c=c, d=d, m=0, prior="uniform")
## Mean results for some speficic models
median(essai[which(essai$MODEL == "TSCD") ,]$SeT, na.rm=TRUE)
mean( essai[which(essai$MODEL == "TSCD") ,]$SeT, na.rm=TRUE)
mean( essai[which(essai$MODEL == "TD") ,]$SeT, na.rm=TRUE)
sd( essai[which(essai$MODEL == "TD") ,]$T, na.rm=TRUE)
## Result for each models for the first subject
essai[which(essai$ID == 1) ,]
max(essai[which(essai$ID == 1) ,]$LL)
## Difference between the estimated values with the T and TSCD models for the
## first subject
essai[which(essai$ID == 1 & essai$MODEL == "T"),]$T
- essai[which(essai$ID == 1 & essai$MODEL == "TSCD"),]$T
Run the code above in your browser using DataLab