oversample
or undersample
before every model fit.Note that observation weights do not influence the sampling and are simply passed down to the next learner.
makeUndersampleWrapper(learner, usw.rate = 1)makeOversampleWrapper(learner, osw.rate = 1)
Learner
].makeOverBaggingWrapper
;
oversample
, undersample
;
smote
Other wrapper: CostSensClassifModel
,
CostSensClassifWrapper
,
makeCostSensClassifWrapper
;
CostSensRegrModel
,
CostSensRegrWrapper
,
makeCostSensRegrWrapper
;
makeBaggingWrapper
;
makeDownsampleWrapper
;
makeFeatSelWrapper
;
makeFilterWrapper
;
makeImputeWrapper
;
makeMulticlassWrapper
;
makeOverBaggingWrapper
;
makePreprocWrapperCaret
;
makePreprocWrapper
;
makeSMOTEWrapper
;
makeTuneWrapper
;
makeWeightedClassesWrapper