oversample or undersample before every model fit.Note that observation weights do not influence the sampling and are simply passed down to the next learner.
makeUndersampleWrapper(learner, usw.rate = 1)makeOversampleWrapper(learner, osw.rate = 1)
Learner].makeOverBaggingWrapper;
oversample, undersample;
smoteOther wrapper: CostSensClassifModel,
CostSensClassifWrapper,
makeCostSensClassifWrapper;
CostSensRegrModel,
CostSensRegrWrapper,
makeCostSensRegrWrapper;
makeBaggingWrapper;
makeDownsampleWrapper;
makeFeatSelWrapper;
makeFilterWrapper;
makeImputeWrapper;
makeMulticlassWrapper;
makeOverBaggingWrapper;
makePreprocWrapperCaret;
makePreprocWrapper;
makeSMOTEWrapper;
makeTuneWrapper;
makeWeightedClassesWrapper