marma(n, p = 0, q = 0, psi, theta, init = rep(0, p), n.start = p,
rand.gen = rfrechet, ...)
mar(n, p = 1, psi, init = rep(0, p), n.start = p, rand.gen =
rfrechet, ...)
mma(n, q = 1, theta, rand.gen = rfrechet, ...)p. Can be omitted if p is zero.q. Can be omitted if q is zero.p.n.start is less than p, then
p minus n.start starting values will be included
in the output series.rand.gen. Most
usefully, the scale and shape parameters of the innovations
generated by rfrechet can be specified by scale
and shape respectively.n.rand.gen. The functions mar and mma generate MAR(p) and
MMA(q) processes respectively.
A MAR(p) process ${X_k}$ is equivalent to a
MARMA(p, 0) process, so that
$$X_k = \max{\phi_1 X_{k-1}, \ldots, \phi_p X_{k-p},
\epsilon_k}.$$
A MMA(q) process ${X_k}$ is equivalent to a
MARMA(0, q) process, so that
$$X_k = \max{\epsilon_k, \theta_1 \epsilon_{k-1}, \ldots,
\theta_q \epsilon_{k-q}}.$$
evmcmarma(100, p = 1, q = 1, psi = 0.75, theta = 0.65)
mar(100, psi = 0.85, n.start = 20)
mma(100, q = 2, theta = c(0.75, 0.8))Run the code above in your browser using DataLab