Learn R Programming

⚠️There's a newer version (1.0.2) of this package.Take me there.

visOmopResults

Package overview

visOmopResults offers a set of functions tailored to format objects of class <summarised_result> (as defined in omopgenerics package).

It provides functionality to create formatted tables and generate plots. These visualizations are highly versatile for reporting results through Shiny apps, RMarkdown, Quarto, and more, supporting various output formats such as HTML, PNG, Word, and PDF.

Let’s get started

You can install the latest version of visOmopResults from CRAN:

install.packages("visOmopResults")

Or you can install the development version from GitHub with:

# install.packages("pak")
pak::pkg_install("darwin-eu/visOmopResults")

The <summarised_result> is a standardised output format utilized across various packages, including:

Although this standard output format is essential, it can sometimes be challenging to manage. The visOmopResults package aims to simplify this process. To demonstrate the package’s functionality, let’s start by using some mock result:

library(visOmopResults)
result <- mockSummarisedResult()

Tables visualisations

Currently all table functionalities are built around 3 packages: tibble, gt, and flextable.

There are two main functions:

  • visOmopTable(): Creates a well-formatted table specifically from a <summarised_result> object.
  • visTable(): Creates a nicely formatted table from any <data.frame> object.

Let’s see a simple example:

result |>
  visOmopTable(
    type = "flextable",
    estimateName = c(
      "N(%)" = "<count> (<percentage>%)", 
      "N" = "<count>", 
      "mean (sd)" = "<mean> (<sd>)"),
    header = c("sex"),
    settingsColumn = NULL,
    groupColumn = c("cohort_name", "age_group"),
    rename = c("Variable" = "variable_name", " " = "variable_level"),
    hide = "cdm_name"
  )

Plots visualisations

Currently all plot functionalities are built around ggplot2. The output of these plot functions is a <ggplot2> object that can be further customised.

There are three plotting functions:

  • plotScatter() to create a scatter plot.
  • plotBar() to create a bar plot.
  • plotBox() to create a box plot.

Let’s see how we can create a simple boxplot for age using this tool:

library(dplyr)
result |>
  filter(variable_name == "number subjects") |>
  filterStrata(sex != "overall") |>
  barPlot(x = "age_group", 
          y = "count",
          facet = "cohort_name", 
          colour = "sex")

Copy Link

Version

Install

install.packages('visOmopResults')

Monthly Downloads

1,282

Version

0.5.1

License

Apache License (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Nuria Mercade-Besora

Last Published

December 11th, 2024

Functions in visOmopResults (0.5.1)

tableOptions

Additional table formatting options for visOmopTable() and visTable()
formatHeader

Create a header for gt and flextable objects
barPlot

Create a bar plot visualisation from a <summarised_result> object
emptyTable

Returns an empty table
customiseText

Apply styling to text or column names
formatEstimateName

Formats estimate_name and estimate_value column
boxPlot

Create a box plot visualisation from a <summarised_result> object
formatTable

Creates a flextable or gt object from a dataframe
mockSummarisedResult

A <summarised_result> object filled with mock data
visOmopTable

Format a <summarised_result> object into a gt, flextable, or tibble object
plotColumns

Columns for the plot functions
formatEstimateValue

Formats the estimate_value column
tableColumns

Columns for the table functions
scatterPlot

Create a scatter plot visualisation from a <summarised_result> object
tableStyle

Supported predefined styles for formatted tables
tableType

Supported table classes
reexports

Objects exported from other packages
visTable

Generate a formatted table from a <data.table>
themeVisOmop

Apply visOmopResults default styling to a ggplot
visOmopResults-package

visOmopResults: Graphs and Tables for OMOP Results