matchPattern(pattern, subject, max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE, algorithm="auto")
countPattern(pattern, subject, max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE, algorithm="auto")
vmatchPattern(pattern, subject, max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE, algorithm="auto", ...)
vcountPattern(pattern, subject, max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE, algorithm="auto", ...)
matchPattern
and countPattern
. An XStringSet or XStringViews object for
vmatchPattern
and vcountPattern
.
?`lowlevel-matching`
for the details).
If non-zero, an algorithm that supports inexact matching is used.
TRUE
then indels are allowed. In that case, min.mismatch
must be 0
and max.mismatch
is interpreted as the maximum
"edit distance" allowed between the pattern and a match.
Note that in order to avoid pollution by redundant matches,
only the "best local matches" are returned.
Roughly speaking, a "best local match" is a match that is locally
both the closest (to the pattern P) and the shortest.
More precisely, a substring S' of the subject S is a "best local match" iff:
(a) nedit(P, S') <= max.mismatch="" (b)="" for="" every="" substring="" s1="" of="" s':="" nedit(p,="" s1)=""> nedit(P, S') (c) for every substring S2 of S that contains S': nedit(P, S2) >= nedit(P, S')One nice property of "best local matches" is that their first and last letters are guaranteed to match the letters in P that they align with.
TRUE
(the default), an IUPAC ambiguity code in the pattern
can only match the same code in the subject, and vice versa.
If FALSE
, an IUPAC ambiguity code in the pattern can match
any letter in the subject that is associated with the code, and
vice versa. See ?`lowlevel-matching`
for more information.
"auto"
, "naive-exact"
,
"naive-inexact"
, "boyer-moore"
, "shift-or"
or "indels"
.
matchPattern
.A single integer for countPattern
.An MIndex object for vmatchPattern
.An integer vector for vcountPattern
, with each element in
the vector corresponding to the number of matches in the corresponding
element of subject
.
pattern
, subject
, max.mismatch
,
min.mismatch
, with.indels
and fixed
arguments. It is important to note that the algorithm
argument
is not part of the search criteria. This is because the supported
algorithms are interchangeable, that is, if 2 different algorithms
are compatible with a given search criteria, then choosing one or
the other will not affect the result (but will most likely affect
the performance). So there is no "wrong choice" of algorithm (strictly
speaking).
Using algorithm="auto"
(the default) is recommended because
then the best suited algorithm will automatically be selected among
the set of algorithms that are valid for the given search criteria.
matchPDict
,
pairwiseAlignment
,
mismatch
,
matchLRPatterns
,
matchProbePair
,
maskMotif
,
alphabetFrequency
,
XStringViews-class,
MIndex-class
## ---------------------------------------------------------------------
## A. matchPattern()/countPattern()
## ---------------------------------------------------------------------
## A simple inexact matching example with a short subject:
x <- DNAString("AAGCGCGATATG")
m1 <- matchPattern("GCNNNAT", x)
m1
m2 <- matchPattern("GCNNNAT", x, fixed=FALSE)
m2
as.matrix(m2)
## With DNA sequence of yeast chromosome number 1:
data(yeastSEQCHR1)
yeast1 <- DNAString(yeastSEQCHR1)
PpiI <- "GAACNNNNNCTC" # a restriction enzyme pattern
match1.PpiI <- matchPattern(PpiI, yeast1, fixed=FALSE)
match2.PpiI <- matchPattern(PpiI, yeast1, max.mismatch=1, fixed=FALSE)
## With a genome containing isolated Ns:
library(BSgenome.Celegans.UCSC.ce2)
chrII <- Celegans[["chrII"]]
alphabetFrequency(chrII)
matchPattern("N", chrII)
matchPattern("TGGGTGTCTTT", chrII) # no match
matchPattern("TGGGTGTCTTT", chrII, fixed=FALSE) # 1 match
## Using wildcards ("N") in the pattern on a genome containing N-blocks:
library(BSgenome.Dmelanogaster.UCSC.dm3)
chrX <- maskMotif(Dmelanogaster$chrX, "N")
as(chrX, "Views") # 4 non masked regions
matchPattern("TTTATGNTTGGTA", chrX, fixed=FALSE)
## Can also be achieved with no mask:
masks(chrX) <- NULL
matchPattern("TTTATGNTTGGTA", chrX, fixed="subject")
## ---------------------------------------------------------------------
## B. vmatchPattern()/vcountPattern()
## ---------------------------------------------------------------------
## Load Fly upstream sequences (i.e. the sequences 2000 bases upstream of
## annotated transcription starts):
dm3_upstream_filepath <- system.file("extdata",
"dm3_upstream2000.fa.gz",
package="Biostrings")
dm3_upstream <- readDNAStringSet(dm3_upstream_filepath)
dm3_upstream
Ebox <- DNAString("CANNTG")
subject <- dm3_upstream
mindex <- vmatchPattern(Ebox, subject, fixed="subject")
nmatch_per_seq <- elementNROWS(mindex) # Get the number of matches per
# subject element.
sum(nmatch_per_seq) # Total number of matches.
table(nmatch_per_seq)
## Let's have a closer look at one of the upstream sequences with most
## matches:
i0 <- which.max(nmatch_per_seq)
subject0 <- subject[[i0]]
ir0 <- mindex[[i0]] # matches in 'subject0' as an IRanges object
ir0
Views(subject0, ir0) # matches in 'subject0' as a Views object
## ---------------------------------------------------------------------
## C. WITH INDELS
## ---------------------------------------------------------------------
library(BSgenome.Celegans.UCSC.ce2)
subject <- Celegans$chrI
pattern1 <- DNAString("ACGGACCTAATGTTATC")
pattern2 <- DNAString("ACGGACCTVATGTTRTC")
## Allowing up to 2 mismatching letters doesn't give any match:
m1a <- matchPattern(pattern1, subject, max.mismatch=2)
## But allowing up to 2 edit operations gives 3 matches:
system.time(m1b <- matchPattern(pattern1, subject, max.mismatch=2,
with.indels=TRUE))
m1b
## pairwiseAlignment() returns the (first) best match only:
if (interactive()) {
mat <- nucleotideSubstitutionMatrix(match=1, mismatch=0, baseOnly=TRUE)
## Note that this call to pairwiseAlignment() will need to
## allocate 733.5 Mb of memory (i.e. length(pattern) * length(subject)
## * 3 bytes).
system.time(pwa <- pairwiseAlignment(pattern1, subject, type="local",
substitutionMatrix=mat,
gapOpening=0, gapExtension=1))
pwa
}
## With IUPAC ambiguities in the pattern:
m2a <- matchPattern(pattern2, subject, max.mismatch=2,
fixed="subject")
m2b <- matchPattern(pattern2, subject, max.mismatch=2,
with.indels=TRUE, fixed="subject")
## All the matches in 'm1b' and 'm2a' should also appear in 'm2b':
stopifnot(suppressWarnings(all(ranges(m1b) %in% ranges(m2b))))
stopifnot(suppressWarnings(all(ranges(m2a) %in% ranges(m2b))))
## ---------------------------------------------------------------------
## D. WHEN 'with.indels=TRUE', ONLY "BEST LOCAL MATCHES" ARE REPORTED
## ---------------------------------------------------------------------
## With deletions in the subject:
subject <- BString("ACDEFxxxCDEFxxxABCE")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)
## With insertions in the subject:
subject <- BString("AiBCDiEFxxxABCDiiFxxxAiBCDEFxxxABCiDEF")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)
## With substitutions (note that the "best local matches" can introduce
## indels and therefore be shorter than 6):
subject <- BString("AsCDEFxxxABDCEFxxxBACDEFxxxABCEDF")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)
Run the code above in your browser using DataLab