This group of functions evaluates and coerces changes in class structure.
as.matrix.csr(x, nrow, ncol, eps = .Machine$double.eps, ...)
# S4 method for matrix.csr.chol
as.matrix.csr(x, nrow, ncol, eps, upper.tri=TRUE, ...)
# S4 method for matrix.csr
as.matrix.csc(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
# S4 method for matrix.coo
as.matrix.ssr(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
# S4 method for matrix.csc
as.matrix.ssc(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
# S4 method for matrix.csr
as.matrix.coo(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)is.matrix.csr(x)
is.matrix.csc(x)
is.matrix.ssr(x)
is.matrix.ssc(x)
is.matrix.coo(x)
is a matrix, or vector object, of either dense or sparse form
number of rows of matrix
number of columns of matrix
A tolerance parameter: elements of x such that abs(x) < eps set to zero.
This argument is only relevant when coercing matrices from dense to sparse form. Defaults to
eps = .Machine$double.eps
logical
, to choose upper or lower triangular matrix result.
other arguments
The function matrix.csc
acts like matrix
to coerce a vector object to
a sparse matrix object of class matrix.csr
.
This aspect of the code is in the process of conversion from S3 to S4 classes.
For the most part the S3 syntax prevails. An exception is the code to
coerce vectors to diagonal matrix form which uses as(v,"matrix.diag.csr"
.
The generic functions as.matrix.xxx
coerce a matrix x
into
a matrix of storage class matrix.xxx
. The argument matrix x
may be of conventional dense form, or of any of the four supported
classes: matrix.csr, matrix.csc, matrix.ssr, matrix.ssc
.
The generic functions is.matrix.xxx
evaluate whether the
argument is of class matrix.xxx
. The function
as.matrix
transforms a matrix of any sparse class into conventional
dense form. The primary storage class for sparse matrices is the
compressed sparse row matrix.csr
class.
An n by m matrix A with real elements matrix.csr
format consists of three arrays:
ra
: a real array of nnz elements containing the non-zero
elements of A, stored in row order. Thus, if i<j, all elements of row i
precede elements from row j. The order of elements within the rows is immaterial.
ja
: an integer array of nnz elements containing the column
indices of the elements stored in ra
.
ia
: an integer array of n+1 elements containing pointers to
the beginning of each row in the arrays ra
and ja
. Thus
ia[i]
indicates the position in the arrays ra
and
ja
where the ith row begins. The last, (n+1)st, element of
ia
indicates where the n+1 row would start, if it existed.
The compressed sparse column class matrix.csc
is defined in
an analogous way, as are the matrix.ssr
, symmetric sparse row, and
matrix.ssc
, symmetric sparse column classes.
Koenker, R and Ng, P. (2002) SparseM: A Sparse Matrix Package for R. http://www.econ.uiuc.edu/~roger/research/home.html
SparseM.hb
for handling Harwell-Boeing sparse matrices.
t(m5 <- as.matrix.csr(c(-1:1,0,0)))
t(M4 <- as.matrix.csc(c(0:2,0), 4))
(S3 <- as.matrix.ssr(diag(x = 0:2))) # *symmetric*
stopifnot(identical(dim(m5), c(5L, 1L)),
identical(dim(M4), c(4L, 1L)),
identical(dim(S3), c(3L, 3L)))
n1 <- 10
p <- 5
a <- round(rnorm(n1*p), 2)
a[abs(a) < 0.7] <- 0
A <- matrix(a,n1,p)
B <- t(A) %*% A
A.csr <- as.matrix.csr(A)
A.csc <- as.matrix.csc(A)
B.ssr <- as.matrix.ssr(B)
B.ssc <- as.matrix.ssc(B)
stopifnot(exprs = {
is.matrix.csr(A.csr) # -> TRUE
is.matrix.csc(A.csc) # -> TRUE
is.matrix.ssr(B.ssr) # -> TRUE
is.matrix.ssc(B.ssc) # -> TRUE
})
as.matrix(A.csr)
as.matrix(A.csc)
as.matrix(B.ssr)
as.matrix(B.ssc)
as.matrix.csr(0, 2,3) # sparse matrix of all zeros
## Diagonal (sparse) :
as(4, "matrix.diag.csr") # identity matrix of dimension 4
as(2:0, "matrix.diag.csr") # diagonal 3x3 matrix
Run the code above in your browser using DataLab