Learn R Programming

⚠️There's a newer version (2.2.10) of this package.Take me there.

emil (version 1.1-6)

Evaluation of Modeling without Information Leakage

Description

A toolbox for designing and evaluating predictive models with resampling methods. The aim of this package is to provide a simple and efficient general framework for working with any type of prediction problem, be it classification, regression or survival analysis, that is easy to extend and adapt to your specific setting. Some commonly used methods for classification, regression and survival analysis are included.

Copy Link

Version

Install

install.packages('emil')

Monthly Downloads

46

Version

1.1-6

License

GPL (>= 2)

Maintainer

Christofer Backlin

Last Published

August 1st, 2014

Functions in emil (1.1-6)

as.Surv.Surv

Trivial function
as.matrix.outcome

Convert outcome vector to matrix
emil.fit.lm

Fit a linear model fitted with ordinary least squares
emil.predict.glmnet

Predict using generalized linear model with elastic net regularization
emil.vimp.randomForest

Variable importance of random forest.
emil.vimp.pamr

Variable importance of nearest shrunken centroids.
emil.predict.lm

Prediction using linear model
nice.require

Load a package and offer to install if missing
fit

Fit a model
resample

Resampling schemes
factor.events

Get events on factor form
emil.predict.qda

Prediction using already trained classifier.
is.blank

Wrapper for several methods to test if a variable is empty
pre.process

Data preprocessing
emil.predict.cforest

Predict with conditional inference forest
emil.fit.qda

Fit quadratic discriminant.
dim.outcome

Dimension of an outcome vector
predict.modeling.procedure

Predict the response of unknown observations
batch.model

Perform modeling
as.Surv

Convert object to Surv vector
is.outcome

Test if object is of class outcome
emil.predict.pamr

Prediction using nearest shrunken centroids.
emil.fit.glmnet

Fit GLM with LASSO, Ridge or elastic net regularization.
subtree

Extract a subset of a tree of nested lists
emil.fit.lda

Fit linear discriminant
emil.predict.caret

Predict using a caret method
is.na.outcome

Check for missing values
error.fun

Performance estimation functions
p.value.coxph

Extract p-value from a Cox proportional hazards model
resample.mapply

Compare true response to resampled predictions
p.value

Extraction of p-value from a statistical test
emil.fit.caret

Fit a model using the caret package
as.data.frame.outcome

Convert outcome vector to data frame
emil

Introduction to the emil package
as.outcome

Convert object to outcome vector
fill

Replace values with something else
p.value.survdiff

Extracts p-value from a logrank test
print.outcome

Print outcome vector
evaluate.modeling

Performance estimation of modeling procedures
image.resample

Visualize resampling scheme
emil.extensions

Extending the emil framework with user-defined methods
neg.gmpa

Negative geometric mean of class specific predictive accuracy
as.outcome.Surv

Convert Surv vector to outcome vector
impute

Regular imputation
as.character.outcome

Convert outcome vector to character vector
length.outcome

Length of an outcome vector
emil.fit.randomForest

Fit random forest.
emil.fit.pamr

Fit nearest shrunken centroids model.
emil.predict.lda

Prediction using already trained prediction model
emil.predict.randomForest

Prediction using random forest.
trace.msg

Print a timestamped and indented log message
[.outcome

Extract
integer.events

Return events in integer form
as.Surv.outcome

Convert outcome vector to Surv vector
index.fit

Convert a fold to row indexes of fittdng or test set
modeling.procedure

Setup a modeling procedure
emil.fit.cforest

Fit conditional inference forest
p.value.cuminc

Extract p-value from a cumulative incidence estimation
outcome

Create a vector of outcomes
subresample

Generate resampling subschemes
weighted.error.rate

Weighted error rate
p.value.crr

Extracts p-value from a competing risk model
pre.impute.knn

kNN imputation
warn.once

Print a warning message if not printed earlier
vimp

Variable importance of a fitted model
pre.pamr

PAMR adapted dataset pre-processing
subframe

Extract and organize predictions according to a resampling scheme
plot.outcome

Plot outcome vector
tune

Tune parameters of modeling procedures