#############################################################################
# EXAMPLE 1: Multiple choice DINA model for data.cdm01 dataset
#############################################################################
data(data.cdm01)
dat <- data.cdm01$data
group <- data.cdm01$group
q.matrix <- data.cdm01$q.matrix
#*** Model 1: Single group model
mod1 <- mcdina( dat=dat , q.matrix=q.matrix )
summary(mod1)
#*** Model 2: Multiple group model with group-invariant item parameters
mod2 <- mcdina( dat=dat , q.matrix=q.matrix , group=group , itempars="jo")
summary(mod2)
#*** Model 3: Multiple group model with group-specific item parameters
mod3 <- mcdina( dat=dat , q.matrix=q.matrix , group=group , itempars="gr")
summary(mod3)
#*** Model 4: Multiple group model with some group-specific item parameters
itempars <- rep("jo" , ncol(dat))
itempars[ c( 2, 7, 9) ] <- "gr" # set items 2,7 and 9 group specific
mod4 <- mcdina( dat=dat , q.matrix=q.matrix , group=group , itempars=itempars)
summary(mod4)
#*** Model 5: Reduced skill space
# define skill classes
skillclasses <- scan(nlines=1) # read only one line
0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1
skillclasses <- matrix( skillclasses , ncol=3 , byrow=TRUE )
mod5 <- mcdina( dat , q.matrix , group=group0 , skillclasses=skillclasses )
summary(mod5)
#*** Model 6: Reduced skill space with setting zero probabilities
# for some latent classes
# set probabilities of classes P101 P011 (6th and 7th class) to zero
zeroprob.skillclasses <- c( 6 , 7 )
mod6 <- mcdina( dat, q.matrix, group=group, zeroprob.skillclasses=zeroprob.skillclasses )
summary(mod6)
#############################################################################
# EXAMPLE 2: Using the mcdina function for estimating the DINA model
#############################################################################
data(sim.dina)
data(sim.qmatrix)
# estimate the DINA model
mod <- mcdina( sim.dina , q.matrix=sim.qmatrix )
summary(mod)
#############################################################################
# EXAMPLE 3: MCDINA model with polytomous attributes
#############################################################################
data(data.cdm02)
dat <- data.cdm02$data
q.matrix <- data.cdm02$q.matrix
# estimate model with polytomous attribute B1
mod1 <- mcdina( dat , q.matrix=q.matrix )
summary(mod1)
Run the code above in your browser using DataLab