sirt (version 1.9-0)

mcmc.2pnoh: MCMC Estimation of the Hierarchical IRT Model for Criterion-Referenced Measurement

Description

This function estimates the hierarchical IRT model for criterion-referenced measurement which is based on a two-parameter normal ogive response function (Janssen, Tuerlinckx, Meulders & de Boeck, 2000).

Usage

mcmc.2pnoh(dat, itemgroups , prob.mastery=c(.5,.8) , weights=NULL , 
      burnin = 500, iter = 1000, N.sampvalues = 1000, 
      progress.iter = 50, prior.variance=c(1,1) , save.theta = FALSE)

Arguments

dat
Data frame with dichotomous item responses
itemgroups
Vector with characters or integers which define the criterion to which an item is associated.
prob.mastery
Probability levels which define nonmastery, transition and mastery stage (see Details)
weights
An optional vector with student sample weights
burnin
Number of burnin iterations
iter
Total number of iterations
N.sampvalues
Maximum number of sampled values to save
progress.iter
Display progress every progress.iter-th iteration. If no progress display is wanted, then choose progress.iter larger than iter.
prior.variance
Scale parameter of the inverse gamma distribution for the $\sigma^2$ and $\nu^2$ item variance parameters
save.theta
Should theta values be saved?

Value

  • A list of class mcmc.sirt with following entries:
  • mcmcobjObject of class mcmc.list
  • summary.mcmcobjSummary of the mcmcobj object. In this summary the Rhat statistic and the mode estimate MAP is included. The variable PercSEratio indicates the proportion of the Monte Carlo standard error in relation to the total standard deviation of the posterior distribution.
  • burninNumber of burnin iterations
  • iterTotal number of iterations
  • alpha.chainSampled values of $\alpha_{ik}$ parameters
  • beta.chainSampled values of $\beta_{ik}$ parameters
  • xi.chainSampled values of $\xi_{k}$ parameters
  • omega.chainSampled values of $\omega_{k}$ parameters
  • sigma.chainSampled values of $\sigma$ parameter
  • nu.chainSampled values of $\nu$ parameter
  • theta.chainSampled values of $\theta_p$ parameters
  • deviance.chainSampled values of Deviance values
  • EAP.relEAP reliability
  • personData frame with EAP person parameter estimates for $\theta_p$ and their corresponding posterior standard deviations
  • datUsed data frame
  • weightsUsed student weights
  • ...Further values

Details

The hierarchical IRT model for criterion-referenced measurement (Janssen et al., 2000) assumes that every item $i$ intends to measure a criterion $k$. The item response function is defined as $$P(X_{pik} = 1 | \theta_p ) = \Phi [ \alpha_{ik} ( \theta_p - \beta_{ik} ) ] \quad , \quad \theta_p \sim N(0,1)$$ Item parameters $(\alpha_{ik},\beta_{ik})$ are hierarchically modelled, i.e. $$\beta_{ik} \sim N( \xi_k , \sigma^2 ) \quad \mbox{and} \quad \alpha_{ik} \sim N( \omega_k , \nu^2 )$$ In the mcmc.list output object, also the derived parameters $d_{ik}= \alpha_{ik} \beta_{ik}$ and $\tau_k = \xi_k \omega_k$ are calculated. Mastery and nonmastery probabilities are based on a reference item $Y_{k}$ of criterion $k$ and a response function $$P(Y_{pk} = 1 | \theta_p ) = \Phi [ \omega_{k} ( \theta_p - \xi_{k} ) ] \quad , \quad \theta_p \sim N(0,1)$$ With known item parameters and person parameters, response probabilities of criterion $k$ are calculated. If a response probability of criterion $k$ is larger than prob.mastery[2], then a student is defined as a master. If this probability is smaller than prob.mastery[1], then a student is a nonmaster. In all other cases, students are in a transition stage. In the mcmcobj output object, the parameters d[i] are defined by $d_{ik} = \alpha_{ik} \cdot \beta_{ik}$ while tau[k] are defined by $\tau_k = \xi_k \cdot \omega_k$.

References

Janssen, R., Tuerlinckx, F., Meulders, M., & de Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 285-306.

See Also

S3 methods: summary.mcmc.sirt, plot.mcmc.sirt The two-parameter normal ogive model can be estimated with mcmc.2pno.

Examples

Run this code
#############################################################################
# SIMULATED EXAMPLE 1: Simulated data according to Janssen et al. (2000, Table 2)
#############################################################################

N <- 1000
Ik <- c(4,6,8,5,9,6,8,6,5)
xi.k <- c( -.89 , -1.13 , -1.23 , .06 , -1.41 , -.66 , -1.09 , .57 , -2.44)
omega.k <- c(.98 , .91 , .76 , .74 , .71 , .80 , .79 , .82 , .54)

# select 4 attributes
K <- 4
Ik <- Ik[1:K] ; xi.k <- xi.k[1:K] ; omega.k <- omega.k[1:K]
sig2 <- 3.02
nu2 <- .09
I <- sum(Ik)
b <- rep( xi.k , Ik ) + rnorm(I , sd = sqrt(sig2) )
a <- rep( omega.k , Ik ) + rnorm(I , sd = sqrt(nu2) )
theta1 <- rnorm(N)
t1 <- rep(1,N)
p1 <- pnorm( outer(t1,a) * ( theta1 - outer(t1,b) ) )
dat <- 1  * ( p1 > runif(N*I)  )
itemgroups <- rep( paste0("A" , 1:K ) , Ik )

# estimate model
mod <- mcmc.2pnoh(dat  , itemgroups , burnin=200 , iter=1000 )
# summary
summary(mod)
# plot
plot(mod$mcmcobj , ask=TRUE)
# write coda files
mcmclist2coda( mod$mcmcobj , name = "simul_2pnoh" )

Run the code above in your browser using DataLab