# NOT RUN {
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
# Theoretical value
value1 = meanvarTMD(a,b,mu,Sigma,dist="normal")
#MC estimate
MC11 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal") #by defalut n = 10000
MC12 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal",n = 10^5) #more precision
# Now works for for any nu>0
value2 = meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 0.87)
value3 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),dist = "SN")
value4 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),nu = 4,dist = "ST")
value5 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
value6 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,nu = 4,dist = "EST")
# }
# NOT RUN {
#Skew-unified Normal (SUN) and Skew-unified t (SUT) distributions
Lambda = matrix(c(1,0,2,-3,0,-1),3,2) #A skewness matrix p times q
Gamma = matrix(c(1,-0.5,-0.5,1),2,2) #A correlation matrix q times q
tau = c(-1,2) #A vector of extension parameters of dim q
value7 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,dist = "SUN")
value8 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,nu = 4,dist = "SUT")
#The ESN and EST as particular cases of the SUN and SUT for q=1
Lambda = matrix(c(-2,0,1),3,1)
Gamma = 1
value9 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = 1,Gamma = Gamma,dist = "SUN")
value10 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = 1,Gamma = Gamma,nu = 4,dist = "SUT")
round(value5$varcov,2) == round(value9$varcov,2)
round(value6$varcov,2) == round(value10$varcov,2)
# }
Run the code above in your browser using DataLab