
To be used when risk of disclosure for individuals within a family is considered to be statistical independent.
Internally, function freqCalc() and indivRisk are used for estimation.
measure_risk(obj,...)
#measure_risk(data,keyVars,w=NULL,missing=-999,
#hid=NULL,max_global_risk=.01,fast_hier=TRUE)
ldiversity(obj,ldiv_index,l_recurs_c=2,missing=-999,...)
## S3 method for class 'measure_risk':
print(x, ...)
## S3 method for class 'ldiversity':
print(x, ...)
Global risk:
The sum of the individual risks in the dataset gives the
expected number of re-identifications that serves as measure of the global risk.
l-Diversity:
If
Machanavajjhala, A. and Kifer, D. and Gehrke, J. and Venkitasubramaniam, M. (2007) l-Diversity: Privacy Beyond k-Anonymity. ACM Trans. Knowl. Discov. Data, 1(1) additionally, have a look at the vignettes of sdcMicro for further reading.
freqCalc
, indivRisk
## measure_risk with sdcMicro objects:
data(testdata)
sdc <- createSdcObj(testdata,
keyVars=c('urbrur','roof','walls','water','electcon'),
numVars=c('expend','income','savings'), w='sampling_weight')
## risk is already estimated and available in...
names(sdc@risk)
## measure risk on data frames or matrices:
res <- measure_risk(testdata,
keyVars=c("urbrur","roof","walls","water","sex"))
print(res)
head(res$Res)
resw <- measure_risk(testdata,
keyVars=c("urbrur","roof","walls","water","sex"),w="sampling_weight")
print(resw)
head(resw$Res)
res1 <- ldiversity(testdata,
keyVars=c("urbrur","roof","walls","water","sex"),ldiv_index="electcon")
print(res1)
head(res1)
res2 <- ldiversity(testdata,
keyVars=c("urbrur","roof","walls","water","sex"),ldiv_index=c("electcon","relat"))
print(res2)
head(res2)
# measure risk with household risk
resh <- measure_risk(testdata,
keyVars=c("urbrur","roof","walls","water","sex"),w="sampling_weight",hid="ori_hid")
print(resh)
# change max_global_risk
rest <- measure_risk(testdata,
keyVars=c("urbrur","roof","walls","water","sex"),
w="sampling_weight",max_global_risk=0.0001)
print(rest)
## for objects of class sdcMicro:
data(testdata2)
sdc <- createSdcObj(testdata2,
keyVars=c('urbrur','roof','walls','water','electcon','relat','sex'),
numVars=c('expend','income','savings'), w='sampling_weight')
## already interally applied and availabe in object sdc:
## sdc <- measure_risk(sdc)
Run the code above in your browser using DataLab