merPredD object and a response
module of a class that inherits from class
lmResp . A model with a
lmerResp response has class lmerMod; a
glmResp response has class glmerMod; and a
nlsResp response has class nlmerMod.## S3 method for class 'merMod':
anova(object, ..., refit = TRUE, model.names=NULL)
## S3 method for class 'merMod':
coef(object, ...)
## S3 method for class 'merMod':
deviance(object, REML = NULL, ...)
REMLcrit(object)
## S3 method for class 'merMod':
extractAIC(fit, scale = 0, k = 2, ...)
## S3 method for class 'merMod':
family(object, ...)
## S3 method for class 'merMod':
formula(x, fixed.only = FALSE, random.only = FALSE, ...)
## S3 method for class 'merMod':
fitted(object, ...)
## S3 method for class 'merMod':
logLik(object, REML = NULL, ...)
## S3 method for class 'merMod':
nobs(object, ...)
## S3 method for class 'merMod':
ngrps(object, ...)
## S3 method for class 'merMod':
terms(x, fixed.only = TRUE, random.only = FALSE, \dots)
## S3 method for class 'merMod':
vcov(object, correlation = TRUE, sigm = sigma(object),
use.hessian = NULL, ...)
## S3 method for class 'merMod':
model.frame(formula, fixed.only = FALSE, ...)
## S3 method for class 'merMod':
model.matrix(object, type = c("fixed", "random", "randomListRaw"), ...)
## S3 method for class 'merMod':
print(x, digits = max(3, getOption("digits") - 3),
correlation = NULL, symbolic.cor = FALSE,
signif.stars = getOption("show.signif.stars"), ranef.comp = "Std.Dev.", ...)## S3 method for class 'merMod':
summary(object, correlation = , use.hessian = NULL, \dots)
## S3 method for class 'summary.merMod':
print(x, digits = max(3, getOption("digits") - 3),
correlation = NULL, symbolic.cor = FALSE,
signif.stars = getOption("show.signif.stars"),
ranef.comp = c("Variance", "Std.Dev."), show.resids = TRUE, ...)
## S3 method for class 'merMod':
update(object, formula., ..., evaluate = TRUE)
## S3 method for class 'merMod':
weights(object, type = c("prior", "working"), ...)
merMod or summary.merMod,
respectively, the latter resulting from summary() .merMod .model.frame, a
merMod object.lmerMod should be
refitted with ML before comparing models. The default is
TRUE to prevent the common mistake of inappropriately
comparing REML-fitted models with different fixedextractAIC).extractAIC.TRUE, return the restricted log-likelihood
rather than the log-likelihood. If NULL (the default),
set REML to isREML(object) (see isREMLfixed.only; indicates
whether random components only are sought. (Trying to specify
fixed.only and random.only at the same time
will produce an error.)vcov, indicates whether the correlation matrix as well as
the variance-covariance matrix is desired;
for summary.merMod, indicates whether the correlation matrix
should be computed and stored along wsigma(object).symnum function is used.update.formula.update.weights, type of weights to be returned; either "prior" for
the initially supplied weights or "working" for the weights
at the final iteration of the penalized iteratively reweighted least
squares algglmerMod object: deviance(object) NA in lme4
absolute object@resp$aic() -2*logLik(object)
}
This table requires two caveats:
Gamma) thenobject@resp$aic() - 2 * getME(object,
"devcomp")$dims["useSc"]is required for the absolute-conditional
case.logLik(object)is currently only proportional to the
absolute-unconditional log-likelihood. For more information about this topic see the misc/logLikGLMM
directory in the package source.
lmer, glmer,
nlmer, merPredD ,
lmerResp ,
glmResp ,
nlsResp Other methods for merMod objects documented elsewhere include:
fortify.merMod, drop1.merMod,
isLMM.merMod, isGLMM.merMod,
isNLMM.merMod, isREML.merMod,
plot.merMod, predict.merMod,
profile.merMod, ranef.merMod,
refit.merMod, refitML.merMod,
residuals.merMod, sigma.merMod,
simulate.merMod, summary.merMod.
showClass("merMod")
methods(class="merMod")## over 30 (S3) methods available
## -> example(lmer) for an example of vcov.merMod()Run the code above in your browser using DataLab