metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, studlab,
data=NULL, subset=NULL,
sm=.settings$smcont, pooledvar=.settings$pooledvar,
level=.settings$level, level.comb=.settings$level.comb,
comb.fixed=.settings$comb.fixed, comb.random=.settings$comb.random,
hakn=.settings$hakn,
method.tau=.settings$method.tau, tau.preset=NULL, TE.tau=NULL,
tau.common=.settings$tau.common,
prediction=.settings$prediction, level.predict=.settings$level.predict,
method.bias=.settings$method.bias,
title=.settings$title, complab=.settings$complab, outclab="",
label.e=.settings$label.e, label.c=.settings$label.c,
label.left=.settings$label.left, label.right=.settings$label.right,
byvar, bylab, print.byvar=.settings$print.byvar,
keepdata=.settings$keepdata,
warn=.settings$warn)"DL", "PM", "REML", "ML", "HS",
"SJ", "HE", o"rank", "linreg", or "mm", can
be abbreviated. See function metabias"MD" or "SMD") is to be used for pooling of
studies.sm="MD").n.e).c("metacont", "meta") with corresponding
print, summary, plot function. The object is a
list containing the following components:"Inverse".hakn=TRUE).keepdata=TRUE).keepdata=TRUE).method.tau="DL"). The mean difference is used as measure of treatment effect if
sm="MD" -- which correspond to sm="WMD" in older
versions (<0.9) of="" the="" meta="" package.="" for="" summary="" measure="" "SMD", Hedges' adjusted g is utilised for pooling.
For several arguments defaults settings are utilised (assignments
with .settings$). These defaults can be changed using the
settings.meta function.0.9)>
Internally, both fixed effect and random effects models are
calculated regardless of values choosen for arguments
comb.fixed and comb.random. Accordingly, the estimate
for the random effects model can be extracted from component
TE.random of an object of class "meta" even if
argument comb.random=FALSE. However, all functions in R
package meta will adequately consider the values for
comb.fixed and comb.random. E.g. function
print.meta will not print results for the random
effects model if comb.random=FALSE.
The function metagen is called internally to calculate
individual and overall treatment estimates and standard errors.
A prediction interval for treatment effect of a new study is
calculated (Higgins et al., 2009) if arguments prediction and
comb.random are TRUE.
R function update.meta can be used to redo the
meta-analysis of an existing metacont object by only specifying
arguments which should be changed.
For the random effects, the method by Hartung and Knapp (2003) is
used to adjust test statistics and confidence intervals if argument
hakn=TRUE.
The iterative Paule-Mandel method (1982) to estimate the
between-study variance is used if argument
method.tau="PM". Internally, R function paulemandel is
called which is based on R function mpaule.default from R package
metRology from S.L.R. Ellison method.tau) are also available:
For these methods the R function method.tau="REML")method.tau="ML")method.tau="HS")method.tau="SJ")method.tau="HE")method.tau="EB").rma.uni of R package metafor
is called internally. See help page of R function rma.uni for
more details on these methods to estimate between-study variance.
DerSimonian R & Laird N (1986), Meta-analysis in clinical trials. Controlled Clinical Trials, 7, 177--188.
Hartung J & Knapp G (2001), On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statistics in Medicine, 20, 1771--82. doi: 10.1002/sim.791 . Higgins JPT, Thompson SG, Spiegelhalter DJ (2009), A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A, 172, 137--159.
Knapp G & Hartung J (2003), Improved Tests for a Random Effects Meta-regression with a Single Covariate. Statistics in Medicine, 22, 2693--710, doi: 10.1002/sim.1482 . Paule RC & Mandel J (1982), Consensus values and weighting factors. Journal of Research of the National Bureau of Standards, 87, 377--385. Viechtbauer W (2010), Conducting Meta-Analyses in R with the Metafor Package. Journal of Statistical Software, 36, 1--48.
update.meta, metabin, metagendata(Fleiss93cont)
meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD")
meta1
forest(meta1)
meta2 <- metacont(Fleiss93cont$n.e, Fleiss93cont$mean.e,
Fleiss93cont$sd.e,
Fleiss93cont$n.c, Fleiss93cont$mean.c,
Fleiss93cont$sd.c,
sm="SMD")
meta2
data(amlodipine)
meta3 <- metacont(n.amlo, mean.amlo, sqrt(var.amlo),
n.plac, mean.plac, sqrt(var.plac),
data=amlodipine, studlab=study)
summary(meta3)
# Use pooled variance
#
meta4 <- metacont(n.amlo, mean.amlo, sqrt(var.amlo),
n.plac, mean.plac, sqrt(var.plac),
data=amlodipine, studlab=study,
pooledvar=TRUE)
summary(meta4)Run the code above in your browser using DataLab