metacr(x, comp.no=1, outcome.no=1, method, sm, level=.settings$level, level.comb=.settings$level.comb, comb.fixed, comb.random, hakn=FALSE, method.tau="DL", tau.common=FALSE, prediction=.settings$prediction, level.predict=.settings$level.predict, swap.events, logscale, backtransf=.settings$backtransf, title, complab, outclab, keepdata=.settings$keepdata, warn=FALSE)
rm5
created by R function
read.rm5
."Inverse"
, "MH"
, or
"Peto"
, can be abbreviated."RR"
, "OR"
, "RD"
, "ASD"
, "HR"
,
"MD"
, or "SMD"
, or "ROM"
) is to be used for
pooling of studies."DL"
, "PM"
, "REML"
, "ML"
, "HS"
,
"SJ"
, "HE"
, or "EB"
, can be abbreviated.backtransf=TRUE
(default), results for sm="OR"
are printed as odds ratios
rather than log odds ratios and results for sm="ZCOR"
are
printed as correlations rather than Fisher's z transformed
correlations, for example.incr
is added to studies with zero cell
frequencies)."meta"
and "metabin"
,
"metacont"
, or "metagen"
depending on outcome type
utilised in Cochrane Intervention review for selected outcome.
metabin
, metacont
, and metagen
are
called - depending on the definition of the outcome in RevMan 5.
metabin
, metacont
, metagen
, read.rm5
# Locate export data file "Fleiss93_CR.csv"
# in sub-directory of package "meta"
#
filename <- system.file("data/Fleiss93_CR.csv.gz", package = "meta")
#
Fleiss93_CR <- read.rm5(filename)
# Same result as R command example(Fleiss93):
#
metacr(Fleiss93_CR)
# Same result as R command example(Fleiss93cont):
#
metacr(Fleiss93_CR, 1, 2)
forest(metacr(Fleiss93_CR, 1, 2))
# Change summary measure to RR
#
m1 <- metacr(Fleiss93_CR)
update(m1, sm="RR")
Run the code above in your browser using DataLab