# NOT RUN {
A <- B <- B2 <- matrix( 0, 10, 12)
A[2,3] <- 3
B[4,7] <- 400
B2[10,12] <- 17
hold <- make.SpatialVx( A, list(B, B2), thresholds = c(0.1, 3.1, 500),
field.type = "contrived", units = "none",
data.name = "Example", obs.name = "A",
model.name = c("B", "B2") )
metrV(hold)
metrV(hold, model = c(1,2) )
# }
# NOT RUN {
data( "pert000" )
data( "pert001" )
data( "ICPg240Locs" )
testobj <- make.SpatialVx( pert000, pert001, thresholds = 1e-8,
projection = TRUE, map = TRUE, loc = ICPg240Locs, loc.byrow = TRUE,
field.type = "Precipitation", units = "mm/h",
data.name = "ICP Perturbed Cases", obs.name = "pert000",
model.name = "pert001" )
metrV(testobj)
# compare above to results in Fig. 3 (top right panel) of Zhu et al. (2011).
data( "geom000" )
data( "geom001" )
testobj <- make.SpatialVx( geom000, geom001, thresholds = 0,
projection = TRUE, map = TRUE, loc = ICPg240Locs, loc.byrow = TRUE,
field.type = "Precipitation", units = "mm/h",
data.name = "ICP Geometric Cases", obs.name = "geom000",
model.name = "geom001" )
metrV(testobj)
# compare above to results in Fig. 2 (top right panel)
# of Zhu et al. (2011). Note that they differ wildly.
# Perhaps because an actual elliptical area is taken in
# the paper instead of finding the values from the fields
# themselves?
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab