Calculates the number of true positives
metric_true_positives(..., thresholds = NULL, name = NULL, dtype = NULL)Passed on to the underlying metric. Used for forwards and backwards compatibility.
(Optional) Defaults to 0.5. A float value or a
list of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is true, below is false). One metric
value is generated for each threshold value.
(Optional) string name of the metric instance.
(Optional) data type of the metric result.
A (subclassed) Metric instance that can be passed directly to
compile(metrics = ), or used as a standalone object. See ?Metric for
example usage.
If sample_weight is given, calculates the sum of the weights of
true positives. This metric creates one local variable, true_positives
that is used to keep track of the number of true positives.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
Other metrics: 
custom_metric(),
metric_accuracy(),
metric_auc(),
metric_binary_accuracy(),
metric_binary_crossentropy(),
metric_categorical_accuracy(),
metric_categorical_crossentropy(),
metric_categorical_hinge(),
metric_cosine_similarity(),
metric_false_negatives(),
metric_false_positives(),
metric_hinge(),
metric_kullback_leibler_divergence(),
metric_logcosh_error(),
metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),
metric_mean_iou(),
metric_mean_relative_error(),
metric_mean_squared_error(),
metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),
metric_mean_wrapper(),
metric_mean(),
metric_poisson(),
metric_precision_at_recall(),
metric_precision(),
metric_recall_at_precision(),
metric_recall(),
metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),
metric_sparse_categorical_accuracy(),
metric_sparse_categorical_crossentropy(),
metric_sparse_top_k_categorical_accuracy(),
metric_specificity_at_sensitivity(),
metric_squared_hinge(),
metric_sum(),
metric_top_k_categorical_accuracy(),
metric_true_negatives()