Always a graph with multiple plots is produced. Each column contains another maximal number of modes and each row another CutOff factor.
Setting rdata=TRUE numerical results are returned in form of a list. If the number of modes and the CutOff parameter contain just one element, the output of "mexmsilhouette" and "exmplot" are equal.
Otherwise we can distinguish between two cases. First \(Lambda\) is not specified, hence the list is four-dimensional. The first element determines the CutOff value of the data by using the sorted CutOff vector (using the plot, this means the row in which the graph is shown). The second element specifies the maximal number of modes by using the sorted mode vector (again using the plot, this means the column of the plot). The third element selects the \(\lambda\) of the graph. For each plot and each \(\lambda\), the following information is stored: the value of \(\lambda\), the \(\lambda\)-clusters and the excess mass vector. Using the default setting \([2,2,5,2]\) shows the \(\lambda\)-clusters of the fifth smallest \(\lambda\) of the \(CutOff=2-M=2\)-plot.
If \(Lambda\) is declared manually, the list is three-dimensional. Hence, the first argument denotes the maximal number of modes (the column of the graph). The second argument indicates the \(\lambda\) by the position held by it in the \(Lambda\) vector. As in "exmplot" only two information are shown. The \(\lambda\)-clusters (\([,,1]\)) and the vector of excess mass (\([,,2]\)), as the value of \(\lambda\) is known.