Learn R Programming

miceadds (version 1.6-0)

mice.impute.weighted.pmm: Imputation by Weighted Predictive Mean Matching

Description

Imputation by predictive mean matching using sampling weights.

Usage

mice.impute.weighted.pmm(y, ry, x, imputationWeights = NULL, 
      pls.facs = NULL, interactions = NULL, quadratics = NULL, ...)

Arguments

y
Incomplete data vector of length n
ry
Vector of missing data pattern (FALSE -- missing, TRUE -- observed)
x
Matrix (n x p) of complete covariates.
imputationWeights
Optional vector of sampling weights
pls.facs
Number of factors in PLS regression (if used). The default is NULL which means that no PLS regression is used for dimension reduction.
interactions
Optional vector of variables for which interactions should be created
quadratics
Optional vector of variables which should also be included as quadratic effects.
...
Further arguments to be passed

Value

  • A vector of length nmis=sum(!ry) with imputed values.

See Also

For imputation with the linear normal regression and sampling weights see mice.impute.weighted.norm.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Imputation using sample weights
#############################################################################
	
data( data.ma01)
set.seed(977)

# select subsample
dat <- as.matrix(data.ma01)
dat <- dat[ 1:1000 , ]

# empty imputation
imp0 <- mice( dat , m=0 , maxit=0)

# redefine imputation methods
meth <- imp0$method
meth[ meth == "pmm"  ] <- "weighted.pmm"
meth[ c("paredu" , "books" , "migrant" ) ] <- "weighted.norm"
# redefine predictor matrix
pm <- imp0$predictorMatrix
pm[ , 1:3 ] <- 0
# do imputation
imp <- mice( dat , predictorMatrix=pm , imputationMethod=meth , 
    imputationWeights= dat[,"studwgt"] , m=3 , maxit=5)

Run the code above in your browser using DataLab