
This class is a wrapper for a series of operations on the original files and the basic manipulations, including the microtable object creation, data reduction, data rarefaction based on Paul et al. (2013) <doi:10.1371/journal.pone.0061217>, taxa abundance calculation, alpha and beta diversity calculation based on the An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228<U+2013>8235.2005> and other basic operations.
microtable.
new()
microtable$new( otu_table, sample_table = NULL, tax_table = NULL, phylo_tree = NULL, rep_fasta = NULL )
otu_table
data.frame; necessary; The feature abundance table, rows are features, e.g. species, cols are samples.
sample_table
data.frame; default NULL; The sample information table, rows are samples, cols are sample metadata; If not provided, the function can generate a table automatically according to the sample names in otu_table.
tax_table
data.frame; default NULL; The taxonomic information table, rows are species, cols are taxonomic classes.
phylo_tree
phylo; default NULL; The phylogenetic tree; use read.tree function in ape package for input.
rep_fasta
list; default NULL; The representative sequences; use read.fasta function in seqinr package for input.
an object of class "microtable" with the following components:
sample_table
The sample information table.
otu_table
The OTU table.
tax_table
The taxonomic table.
phylo_tree
The phylogenetic tree.
rep_fasta
The representative sequence.
taxa_abund
default NULL; use cal_abund function to calculate.
alpha_diversity
default NULL; use cal_alphadiv function to calculate.
beta_diversity
default NULL; use cal_betadiv function to calculate.
data(otu_table_16S) data(taxonomy_table_16S) data(sample_info_16S) data(phylo_tree_16S) dataset <- microtable$new(otu_table = otu_table_16S) dataset <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S, tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S) # trim the files in the dataset dataset$tidy_dataset()
print()
Print the microtable object.
microtable$print()
filter_pollution()
Filter the taxa considered as pollution from tax_table. This operation will remove any line of the tax_table containing any the word in taxa parameter regardless of word case.
microtable$filter_pollution(taxa = c("mitochondria", "chloroplast"))
taxa
default: c("mitochondria", "chloroplast"); filter mitochondria and chloroplast, or others as needed.
None
dataset$filter_pollution(taxa = c("mitochondria", "chloroplast"))
rarefy_samples()
Rarefy communities to make all samples have same species number, modified from the rarefy_even_depth() in phyloseq package, see Paul et al. (2013) <doi:10.1371/journal.pone.0061217>.
microtable$rarefy_samples(sample.size = NULL, rngseed = 123, replace = TRUE)
sample.size
default:NULL; species number, If not provided, use minimum number of all samples.
rngseed
random seed; default: 123.
replace
default: TRUE; see sample
for the random sampling.
None; rarefied dataset.
\donttest{ dataset$rarefy_samples(sample.size = min(dataset$sample_sums()), replace = TRUE) }
tidy_dataset()
Tidy the object of microtable Class. Trim files in the object to make taxa and samples consistent across all files in the object. So the results are intersections.
microtable$tidy_dataset(main_data = TRUE)
main_data
TRUE or FALSE, if TRUE, only basic files in microtable object is trimmed, otherwise, all files, including taxa_abund, alpha_diversity and beta_diversity, are all trimed.
None, Object of microtable itself cleaned up.
dataset$tidy_dataset(main_data = TRUE)
cal_abund()
Calculate the taxonomic abundance at each taxonomic rank.
microtable$cal_abund( select_cols = NULL, rel = TRUE, split_group = FALSE, split_by = "&&", split_column = NULL )
select_cols
default NULL; numeric vector or character vector of colnames of tax_table; used to select columns to merge and calculate abundances. This is very useful if there are commented columns or some columns with multiple structure that cannot be used directly.
rel
default TRUE; if TRUE, relative abundance is used; if FALSE, absolute abundance will be summed.
split_group
default FALSE; if TRUE, split the rows to multiple rows according to one or more columns in tax_table. Very useful when multiple mapping info exist.
split_by
default "&&"; Separator delimiting collapsed values; only useful when split_group == TRUE; see sep in separate_rows function.
split_column
default NULL; character vector or list; only useful when split_group == TRUE; character vector: fixed column or columns used for the splitting in tax_table in each abundance calculation; list: containing more character vectors to assign the column names to each calculation, such as list(c("Phylum"), c("Phylum", "Class")).
taxa_abund in object.
\donttest{ dataset$cal_abund() }
save_abund()
Save taxonomic abundance to the computer local place.
microtable$save_abund(dirpath = "taxa_abund")
dirpath
default "taxa_abund"; directory name to save the taxonomic abundance files.
\dontrun{ dataset$save_abund(dirpath = "taxa_abund") }
sample_sums()
Sum the species number for each sample.
microtable$sample_sums()
species number of samples.
\donttest{ dataset$sample_sums() }
taxa_sums()
Sum the species number for each taxa.
microtable$taxa_sums()
species number of taxa.
\donttest{ dataset$taxa_sums() }
sample_names()
Show sample names.
microtable$sample_names()
sample names.
\donttest{ dataset$sample_names() }
taxa_names()
Show taxa names.
microtable$taxa_names()
taxa names.
\donttest{ dataset$taxa_names() }
merge_samples()
Merge samples according to specific group to generate a new microtable.
microtable$merge_samples(use_group)
use_group
the group column in sample_table.
a new merged microtable object.
\donttest{ dataset$merge_samples(use_group = "Group") }
merge_taxa()
Merge taxa according to specific taxonomic rank to generate a new microtable.
microtable$merge_taxa(taxa = "Genus")
taxa
the specific rank in tax_table.
a new merged microtable object.
\donttest{ dataset$merge_taxa(taxa = "Genus") }
cal_alphadiv()
Calculate alpha diversity in microtable object.
microtable$cal_alphadiv(measures = NULL, PD = FALSE)
measures
default NULL; one or more indexes from "Observed", "Coverage", "Chao1", "ACE", "Shannon", "Simpson", "InvSimpson", "Fisher", "PD"; If null, use all those measures.
PD
TRUE or FALSE, whether phylogenetic tree should be calculated, default FALSE.
alpha_diversity stored in object.
\donttest{ dataset$cal_alphadiv(measures = NULL, PD = FALSE) class(dataset$alpha_diversity) }
save_alphadiv()
Save alpha diversity table to the computer.
microtable$save_alphadiv(dirpath = "alpha_diversity")
dirpath
default "alpha_diversity"; directory name to save the alpha_diversity.csv file.
cal_betadiv()
Calculate beta diversity in microtable object, including Bray-Curtis, Jaccard, and UniFrac. See An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228<U+2013>8235.2005>.
microtable$cal_betadiv(method = NULL, unifrac = FALSE, ...)
method
default NULL; a character vector with one or more elements; If default, "bray" and "jaccard" will be used;
see vegdist
function and method parameter in vegan package.
unifrac
default FALSE; TRUE or FALSE, whether unifrac index should be calculated.
...
parameters passed to vegdist
function.
beta_diversity stored in object.
\donttest{ dataset$cal_betadiv(unifrac = FALSE) class(dataset$beta_diversity) }
save_betadiv()
Save beta diversity matrix to the computer.
microtable$save_betadiv(dirpath = "beta_diversity")
dirpath
default "beta_diversity"; directory name to save the beta diversity matrix files.
clone()
The objects of this class are cloneable with this method.
microtable$clone(deep = FALSE)
deep
Whether to make a deep clone.
# NOT RUN {
## ------------------------------------------------
## Method `microtable$new`
## ------------------------------------------------
data(otu_table_16S)
data(taxonomy_table_16S)
data(sample_info_16S)
data(phylo_tree_16S)
dataset <- microtable$new(otu_table = otu_table_16S)
dataset <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S,
tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S)
# trim the files in the dataset
dataset$tidy_dataset()
## ------------------------------------------------
## Method `microtable$filter_pollution`
## ------------------------------------------------
dataset$filter_pollution(taxa = c("mitochondria", "chloroplast"))
## ------------------------------------------------
## Method `microtable$rarefy_samples`
## ------------------------------------------------
# }
# NOT RUN {
dataset$rarefy_samples(sample.size = min(dataset$sample_sums()), replace = TRUE)
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$tidy_dataset`
## ------------------------------------------------
dataset$tidy_dataset(main_data = TRUE)
## ------------------------------------------------
## Method `microtable$cal_abund`
## ------------------------------------------------
# }
# NOT RUN {
dataset$cal_abund()
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$save_abund`
## ------------------------------------------------
# }
# NOT RUN {
dataset$save_abund(dirpath = "taxa_abund")
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$sample_sums`
## ------------------------------------------------
# }
# NOT RUN {
dataset$sample_sums()
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$taxa_sums`
## ------------------------------------------------
# }
# NOT RUN {
dataset$taxa_sums()
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$sample_names`
## ------------------------------------------------
# }
# NOT RUN {
dataset$sample_names()
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$taxa_names`
## ------------------------------------------------
# }
# NOT RUN {
dataset$taxa_names()
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$merge_samples`
## ------------------------------------------------
# }
# NOT RUN {
dataset$merge_samples(use_group = "Group")
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$merge_taxa`
## ------------------------------------------------
# }
# NOT RUN {
dataset$merge_taxa(taxa = "Genus")
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$cal_alphadiv`
## ------------------------------------------------
# }
# NOT RUN {
dataset$cal_alphadiv(measures = NULL, PD = FALSE)
class(dataset$alpha_diversity)
# }
# NOT RUN {
## ------------------------------------------------
## Method `microtable$cal_betadiv`
## ------------------------------------------------
# }
# NOT RUN {
dataset$cal_betadiv(unifrac = FALSE)
class(dataset$beta_diversity)
# }
Run the code above in your browser using DataLab