Learn R Programming

cutpointr (version 0.7.3)

misclassification_cost: Calculate the misclassification cost

Description

Calculate the misclassification cost from true positives, false positives, true negatives and false negatives. The inputs must be vectors of equal length. misclassification_cost = cost_fp * fp + cost_fn * fn

Usage

misclassification_cost(tp, fp, tn, fn, cost_fp = 1, cost_fn = 1, ...)

Arguments

tp

(numeric) number of true positives.

fp

(numeric) number of false positives.

tn

(numeric) number of true negatives.

fn

(numeric) number of false negatives.

cost_fp

(numeric) the cost of a false positive

cost_fn

(numeric) the cost of a false negative

...

for capturing additional arguments passed by method.

See Also

Other metric functions: F1_score, abs_d_ppv_npv, abs_d_sens_spec, accuracy, cohens_kappa, cutpoint, false_omission_rate, npv, odds_ratio, p_chisquared, plr, ppv, precision, prod_ppv_npv, prod_sens_spec, recall, risk_ratio, sensitivity, specificity, sum_ppv_npv, sum_sens_spec, total_utility, tpr, tp, youden

Examples

Run this code
# NOT RUN {
misclassification_cost(10, 5, 20, 10, cost_fp = 1, cost_fn = 5)
misclassification_cost(c(10, 8), c(5, 7), c(20, 12), c(10, 18),
                       cost_fp = 1, cost_fn = 5)
# }

Run the code above in your browser using DataLab