ml_kmeans(x, centers, iter.max = 100, features = dplyr::tbl_vars(x), compute.cost = TRUE, tolerance = 1e-04, ml.options = ml_options(), ...)tbl_spark).k-means model using Spark's computeCost.ml_options for more details.kmeans with overloaded print, fitted and predict functions.
Other Spark ML routines: ml_als_factorization,
  ml_decision_tree,
  ml_generalized_linear_regression,
  ml_gradient_boosted_trees,
  ml_lda, ml_linear_regression,
  ml_logistic_regression,
  ml_multilayer_perceptron,
  ml_naive_bayes,
  ml_one_vs_rest, ml_pca,
  ml_random_forest,
  ml_survival_regression