The generalized (two-parameter) Mittag-Leffer function is defined by the
power series
$$E_{\alpha,\beta} (z) = \sum_{k=0}^\infty z^k / \Gamma(\alpha
k + \beta) $$
for complex \(z\) and complex \(\alpha, \beta\) with
\(Real(\alpha) > 0\) (only implemented for real valued parameters).
Usage
mlf(z, a, b = 1, g = 1)
Arguments
z
The argument (real-valued)
a, b, g
Parameters of the Mittag-Leffler distribution; see Garrappa
Value
mlf returns the value of the Mittag-Leffler function.
References
Garrappa, R. (2015). Numerical Evaluation of Two and Three Parameter
Mittag-Leffler Functions. SIAM Journal on Numerical Analysis, 53(3),
1350<U+2013>1369. 10.1137/140971191