Learn R Programming

poppr (version 2.1.0)

mlg: Create counts, vectors, and matrices of multilocus genotypes.

Description

Create counts, vectors, and matrices of multilocus genotypes.

Usage

mlg(gid, quiet = FALSE)

mlg.table(gid, strata = NULL, sublist = "ALL", blacklist = NULL, mlgsub = NULL, bar = TRUE, plot = TRUE, total = FALSE, quiet = FALSE)

mlg.vector(gid, reset = FALSE)

mlg.crosspop(gid, strata = NULL, sublist = "ALL", blacklist = NULL, mlgsub = NULL, indexreturn = FALSE, df = FALSE, quiet = FALSE)

mlg.id(gid)

Arguments

gid
a genind or genclone object.
quiet
Logical. If FALSE, progress of functions will be printed to the screen.
strata
a formula specifying the strata at which computation is to be performed.
sublist
a vector of population names or indices that the user wishes to keep. Default to "ALL".
blacklist
a vector of population names or indices that the user wishes to discard. Default to NULL.
mlgsub
a vector of multilocus genotype indices with which to subset mlg.table and mlg.crosspop. NOTE: The resulting table from mlg.table will only contain countries with those MLGs
bar
deprecated. Same as plot. Retained for compatibility.
plot
logical If TRUE, a bar graph for each population will be displayed showing the relative abundance of each MLG within the population.
total
logical If TRUE, a row containing the sum of all represented MLGs is appended to the matrix produced by mlg.table.
reset
logical. For genclone objects, the MLGs are defined by the input data, but they do not change if more or less information is added (i.e. loci are dropped). Setting reset = TRUE will recalculate MLGs. Default is FALSE, returning t
indexreturn
logical If TRUE, a vector will be returned to index the columns of mlg.table.
df
logical If TRUE, return a data frame containing the counts of the MLGs and what countries they are in. Useful for making graphs with ggplot.

Value

  • mlg{ an integer describing the number of multilocus genotypes observed. } mlg.table{ a matrix with columns indicating unique multilocus genotypes and rows indicating populations. } mlg.vector{ a numeric vector naming the multilocus genotype of each individual in the dataset. } mlg.crosspop{
    • default
    { a list where each element contains a named integer vector representing the number of individuals represented from each population in that MLG}
  • indexreturn = TRUEa vector of integers defining the multilocus genotypes that have individuals crossing populations
  • df = TRUEA long form data frame with the columns: MLG, Population, Count. Useful for graphing with ggplot2
  • }

subsection

mlg.id

code

list

See Also

diversity popsub

Examples

Run this code
# Load the data set
data(Aeut)

# Investigate the number of multilocus genotypes.
amlg <- mlg(Aeut)
amlg # 119

# show the multilocus genotype vector 
avec <- mlg.vector(Aeut)
avec 

# Get a table
atab <- mlg.table(Aeut, plot = FALSE)
atab

# See where multilocus genotypes cross populations
acrs <- mlg.crosspop(Aeut) # MLG.59: (2 inds) Athena Mt. Vernon

# See which individuals belong to each MLG
aid <- mlg.id(Aeut)
aid["59"] # individuals 159 and 57

# A simple example. 10 individuals, 5 genotypes.
mat1 <- matrix(ncol=5, 25:1)
mat1 <- rbind(mat1, mat1)
mat <- matrix(nrow=10, ncol=5, paste(mat1,mat1,sep="/"))
mat.gid <- df2genind(mat, sep="/")
mlg(mat.gid)
mlg.vector(mat.gid)
mlg.table(mat.gid)

# Now for a more complicated example.
# Data set of 1903 samples of the H3N2 flu virus genotyped at 125 SNP loci.
data(H3N2)
mlg(H3N2, quiet=FALSE)

H.vec <- mlg.vector(H3N2)

# Changing the population vector to indicate the years of each epidemic.
pop(H3N2) <- other(H3N2)$x$country
H.tab <- mlg.table(H3N2, plot=FALSE, total=TRUE)

# Show which genotypes exist accross populations in the entire dataset.
res <- mlg.crosspop(H3N2, quiet=FALSE)

# Let's say we want to visualize the multilocus genotype distribution for the
# USA and Russia
mlg.table(H3N2, sublist=c("USA", "Russia"), bar=TRUE)

# An exercise in subsetting the output of mlg.table and mlg.vector.
# First, get the indices of each MLG duplicated across populations.
inds <- mlg.crosspop(H3N2, quiet=FALSE, indexreturn=TRUE)

# Since the columns of the table from mlg.table are equal to the number of
# MLGs, we can subset with just the columns.
H.sub <- H.tab[, inds]

# We can also do the same by using the mlgsub flag.
H.sub <- mlg.table(H3N2, mlgsub=inds)

# We can subset the original data set using the output of mlg.vector to
# analyze only the MLGs that are duplicated across populations. 
new.H <- H3N2[H.vec %in% inds, ]

Run the code above in your browser using DataLab