
Function subsets sliding windows of data into input and output datasets to be passed to machine-learning methods.
mlm_io(sw)
A numeric matrix with sliding windows of time series data
as returned by sw
.
A list with input and output datasets.
When sw
has k
columns (sliding windows of size k
),
the input dataset contains the first k-1
columns and the output dataset
contains the last column of data.
E. Ogasawara, L. C. Martinez, D. De Oliveira, G. Zimbrao, G. L. Pappa, and M. Mattoso, 2010, Adaptive Normalization: A novel data normalization approach for non-stationary time series, Proceedings of the International Joint Conference on Neural Networks.
Other transformation methods:
Diff()
,
LogT()
,
WaveletT()
,
emd()
,
mas()
,
outliers_bp()
,
pct()
,
train_test_subset()
# NOT RUN {
data(CATS)
swin <- sw(CATS[,1],5)
d <- mlm_io(swin)
# }
Run the code above in your browser using DataLab