This is the abstract base class for task objects like TaskClassif and TaskRegr. It extends Task with methods to handle a target columns. Supervised tasks for probabilistic regression (including survival analysis) can be found in mlr3proba.
mlr3::Task -> TaskSupervised
new()Creates a new instance of this R6 class.
TaskSupervised$new(id, task_type, backend, target, extra_args = list())
id(character(1))
Identifier for the new instance.
task_type(character(1))
Type of task, e.g. "regr" or "classif".
Must be an element of mlr_reflections$task_types$type.
backend(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend().
E.g., a data.frame() will be converted to a DataBackendDataTable.
target(character(1))
Name of the target column.
extra_args(named list())
Named list of constructor arguments, required for converting task types
via convert_task().
truth()True response for specified row_ids. Format depends on the task type.
Defaults to all rows with role "use".
TaskSupervised$truth(rows = NULL)
rowsinteger()
Row indices.
clone()The objects of this class are cloneable with this method.
TaskSupervised$clone(deep = FALSE)
deepWhether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/tasks.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks) for a table of available Tasks in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Task:
TaskClassif,
TaskRegr,
TaskUnsupervised,
Task,
mlr_tasks_boston_housing,
mlr_tasks_breast_cancer,
mlr_tasks_german_credit,
mlr_tasks_iris,
mlr_tasks_mtcars,
mlr_tasks_penguins,
mlr_tasks_pima,
mlr_tasks_sonar,
mlr_tasks_spam,
mlr_tasks_wine,
mlr_tasks_zoo,
mlr_tasks
# NOT RUN {
TaskSupervised$new("penguins", task_type = "classif", backend = palmerpenguins::penguins,
target = "species")
# }
Run the code above in your browser using DataLab