Usage
mlr(y, X, n=rep(1,nrow(as.matrix(y))),
m.0=array(0, dim=c(ncol(X), ncol(y))),
P.0=array(diag(0, ncol(X)), dim=c(ncol(X),ncol(X),ncol(y))),
samp=1000, burn=500, float=0, device=0, parameters=NULL)
Arguments
y
an N x J-1 dimensional matrix;
\(y_{ij}\) is the average response for category j at \(x_i\).
X
an N x P dimensional design matrix; \(x_i\) is the ith row.
n
an N dimensional vector; \(n_i\) is the total number of observations at each \(x_i\).
m.0
a P x J-1 matrix with the \(\beta_j\)'s prior means.
P.0
a P x P x J-1 array of matrices with the \(\beta_j\)'s prior precisions.
samp
the number of MCMC iterations saved.
burn
the number of MCMC iterations discarded.
float
a number representing the degree of precision to use: for single-precision floating point use 0, for or double-precision floating point use 1.
device
if no external pointer is provided to function, we can provide the ID of the device to use.
parameters
a 9 dimensional vector of parameters to tune the GPU implementation.