Impute numerical features by their median.
R6Class object inheriting from PipeOpImpute/PipeOp.
PipeOpImputeMedian$new(id = "imputemedian", param_vals = list())
id :: character(1)
Identifier of resulting object, default "imputemedian".
param_vals :: named list
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list().
Input and output channels are inherited from PipeOpImpute.
The output is the input Task with all affected numeric features missing values imputed by (column-wise) median.
The $state is a named list with the $state elements inherited from PipeOpImpute.
The $state$model is a named list of numeric(1) indicating the median of the respective feature.
The parameters are the parameters inherited from PipeOpImpute.
Uses the stats::median() function. Features that are entirely NA are imputed as 0.
Only methods inherited from PipeOpImpute/PipeOp.
https://mlr3book.mlr-org.com/list-pipeops.html
Other PipeOps:
PipeOpEnsemble,
PipeOpImpute,
PipeOpTargetTrafo,
PipeOpTaskPreprocSimple,
PipeOpTaskPreproc,
PipeOp,
mlr_pipeops_boxcox,
mlr_pipeops_branch,
mlr_pipeops_chunk,
mlr_pipeops_classbalancing,
mlr_pipeops_classifavg,
mlr_pipeops_classweights,
mlr_pipeops_colapply,
mlr_pipeops_collapsefactors,
mlr_pipeops_colroles,
mlr_pipeops_copy,
mlr_pipeops_datefeatures,
mlr_pipeops_encodeimpact,
mlr_pipeops_encodelmer,
mlr_pipeops_encode,
mlr_pipeops_featureunion,
mlr_pipeops_filter,
mlr_pipeops_fixfactors,
mlr_pipeops_histbin,
mlr_pipeops_ica,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample,
mlr_pipeops_kernelpca,
mlr_pipeops_learner,
mlr_pipeops_missind,
mlr_pipeops_modelmatrix,
mlr_pipeops_multiplicityexply,
mlr_pipeops_multiplicityimply,
mlr_pipeops_mutate,
mlr_pipeops_nmf,
mlr_pipeops_nop,
mlr_pipeops_ovrsplit,
mlr_pipeops_ovrunite,
mlr_pipeops_pca,
mlr_pipeops_proxy,
mlr_pipeops_quantilebin,
mlr_pipeops_randomprojection,
mlr_pipeops_randomresponse,
mlr_pipeops_regravg,
mlr_pipeops_removeconstants,
mlr_pipeops_renamecolumns,
mlr_pipeops_replicate,
mlr_pipeops_scalemaxabs,
mlr_pipeops_scalerange,
mlr_pipeops_scale,
mlr_pipeops_select,
mlr_pipeops_smote,
mlr_pipeops_spatialsign,
mlr_pipeops_subsample,
mlr_pipeops_targetinvert,
mlr_pipeops_targetmutate,
mlr_pipeops_targettrafoscalerange,
mlr_pipeops_textvectorizer,
mlr_pipeops_threshold,
mlr_pipeops_tunethreshold,
mlr_pipeops_unbranch,
mlr_pipeops_updatetarget,
mlr_pipeops_vtreat,
mlr_pipeops_yeojohnson,
mlr_pipeops
Other Imputation PipeOps:
PipeOpImpute,
mlr_pipeops_imputeconstant,
mlr_pipeops_imputehist,
mlr_pipeops_imputelearner,
mlr_pipeops_imputemean,
mlr_pipeops_imputemode,
mlr_pipeops_imputeoor,
mlr_pipeops_imputesample
# NOT RUN {
library("mlr3")
task = tsk("pima")
task$missings()
po = po("imputemedian")
new_task = po$train(list(task = task))[[1]]
new_task$missings()
po$state$model
# }
Run the code above in your browser using DataLab