Splits data repeats
(default: 10) times using a folds
-fold (default: 10) cross-validation.
The iteration counter translates to repeats
blocks of folds
cross-validations, i.e., the first folds
iterations belong to
a single cross-validation.
Iteration numbers can be translated into folds or repeats with provided methods.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("holdout") rsmp("holdout")
repeats
(integer(1)
)
Number of repetitions.
folds
(integer(1)
)
Number of folds.
mlr3::Resampling
-> ResamplingRepeatedCV
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingRepeatedCV$new()
folds()
Translates iteration numbers to fold numbers.
ResamplingRepeatedCV$folds(iters)
iters
(integer()
)
Iteration number.
integer()
of fold numbers.
repeats()
Translates iteration numbers to repetition numbers.
ResamplingRepeatedCV$repeats(iters)
iters
(integer()
)
Iteration number.
integer()
of repetition numbers.
clone()
The objects of this class are cloneable with this method.
ResamplingRepeatedCV$clone(deep = FALSE)
deep
Whether to make a deep clone.
mlr3bischl_2012
Dictionary of Resamplings: mlr_resamplings
as.data.table(mlr_resamplings)
for a complete table of all (also dynamically created) Resampling implementations.
Other Resampling:
Resampling
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_subsampling
,
mlr_resamplings
# NOT RUN {
# Create a task with 10 observations
task = tsk("iris")
task$filter(1:10)
# Instantiate Resampling
rrcv = rsmp("repeated_cv", repeats = 2, folds = 3)
rrcv$instantiate(task)
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)
# Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))
# Internal storage:
rrcv$instance # table
# }
Run the code above in your browser using DataLab