Splits data repeats
(default: 30) times into training and test set
with a ratio of ratio
(default: 2/3) observations going into the training set.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("holdout") rsmp("holdout")
repeats
(integer(1)
)
Number of repetitions.
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
mlr3::Resampling
-> ResamplingSubsampling
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingSubsampling$new()
clone()
The objects of this class are cloneable with this method.
ResamplingSubsampling$clone(deep = FALSE)
deep
Whether to make a deep clone.
mlr3bischl_2012
Dictionary of Resamplings: mlr_resamplings
as.data.table(mlr_resamplings)
for a complete table of all (also dynamically created) Resampling implementations.
Other Resampling:
Resampling
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_repeated_cv
,
mlr_resamplings
# NOT RUN {
# Create a task with 10 observations
task = tsk("iris")
task$filter(1:10)
# Instantiate Resampling
rss = rsmp("subsampling", repeats = 2, ratio = 0.5)
rss$instantiate(task)
# Individual sets:
rss$train_set(1)
rss$test_set(1)
intersect(rss$train_set(1), rss$test_set(1))
# Internal storage:
rss$instance$train # list of index vectors
# }
Run the code above in your browser using DataLab