# NOT RUN {
# retrieve task
task = tsk("pima")
# load learner and set search space
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE))
# hyperparameter tuning on the pima indians diabetes data set
instance = tune(
method = "nloptr",
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
algorithm = "NLOPT_LN_BOBYQA"
)
# best performing hyperparameter configuration
instance$result
# all evaluated hyperparameter configuration
as.data.table(instance$archive)
# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(task)
# }
Run the code above in your browser using DataLab