# Number of columns (samples)
n = 25;
# Number of covariates
nc = 10;
# Generate the standard deviation of the noise
noise.std = 0.1 + rnorm(n)^2;
# Generate the covariates
cvrt.mat = 2 + matrix(rnorm(n*nc), ncol = nc);
# Generate the vectors with single genotype and expression variables
snps.mat = cvrt.mat %*% rnorm(nc) + rnorm(n);
gene.mat = 1 + 0.5 * snps.mat + cvrt.mat %*% rnorm(nc) +
snps.mat * cvrt.mat[,nc] + rnorm(n) * noise.std;
# Create 3 SlicedData objects for the analysis
snps1 = SlicedData$new( matrix( snps.mat, nrow = 1 ) );
gene1 = SlicedData$new( matrix( gene.mat, nrow = 1 ) );
cvrt1 = SlicedData$new( t(cvrt.mat) );
# Call the main analysis function
me = Matrix_eQTL_main(
snps = snps1,
gene = gene1,
cvrt = cvrt1,
'Output_temp.txt',
pvOutputThreshold = 1,
useModel = modelLINEAR_CROSS,
errorCovariance = diag(noise.std^2),
verbose = TRUE,
pvalue.hist = TRUE );
# remove the output file
file.remove( 'Output_temp.txt' );
# Pull Matrix eQTL results - t-statistic and p-value
tstat = me$all$eqtls[ 1, 3 ];
pvalue = me$all$eqtls[ 1, 4 ];
rez = c( tstat = tstat, pvalue = pvalue)
# And compare to those from linear regression in R
{
cat('Matrix eQTL:
');
print(rez);
cat('R summary(lm()) output:
')
lmout = summary(lm(gene.mat ~ snps.mat + cvrt.mat + snps.mat*cvrt.mat[,nc],
weights = 1/noise.std^2))$coefficients[ , 3:4];
print(tail(lmout))
}
Run the code above in your browser using DataLab