
Last chance! 50% off unlimited learning
Sale ends in
Format CFA/SEM objects from the lavaan package (Rosseel, 2012; Merkle and Rosseel 2018).
# S3 method for lavaan
model_parameters(
model,
ci = 0.95,
standardize = FALSE,
component = c("regression", "correlation", "loading", "defined"),
parameters = NULL,
verbose = TRUE,
...
)
CFA or SEM created by the lavaan::cfa
or lavaan::sem
functions.
Confidence Interval (CI) level. Default to 0.95 (95%).
Return standardized parameters (standardized coefficients).
Can be TRUE
(or "all"
or "std.all"
) for standardized
estimates based on both the variances of observed and latent variables;
"latent"
(or "std.lv"
) for standardized estimates based
on the variances of the latent variables only; or "no_exogenous"
(or "std.nox"
) for standardized estimates based on both the
variances of observed and latent variables, but not the variances of
exogenous covariates. See lavaan::standardizedsolution
for details.
What type of links to return. Can be "all"
or some of c("regression", "correlation", "loading", "variance", "mean")
.
Character vector of length 1 with a regular expression pattern
that describes the parameters that should be returned from the data frame, or
a named list of regular expressions. All non-matching parameters will be
removed from the output. If parameters
is a character vector, every
parameter in the "Parameters" column that matches the regular expression in
parameters
will be selected from the returned data frame. Furthermore,
if parameters
has more than one element, these will be merged into
a regular expression pattern like this: "(one|two|three)"
. If
parameters
is a named list of regular expression patterns, the
names of the list-element should equal the column name where selection
should be applied. This is useful for model objects where
model_parameters()
returns multiple columns with parameter components,
like in model_parameters.lavaan
.
Toggle warnings and messages.
Arguments passed to or from other methods.
A data frame of indices related to the model's parameters.
Rosseel Y (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36.
Merkle EC , Rosseel Y (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal of Statistical Software, 85(4), 1-30. http://www.jstatsoft.org/v85/i04/
# NOT RUN {
library(parameters)
# lavaan -------------------------------------
if (require("lavaan", quietly = TRUE)) {
# Confirmatory Factor Analysis (CFA) ---------
structure <- " visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 "
model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
model_parameters(model)
model_parameters(model, standardize = TRUE)
# filter parameters
model_parameters(
model,
parameters = list(
To = "^(?!visual)",
From = "^(?!(x7|x8))"
)
)
# Structural Equation Model (SEM) ------------
structure <- "
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
"
model <- lavaan::sem(structure, data = PoliticalDemocracy)
model_parameters(model)
model_parameters(model, standardize = TRUE)
}
# }
Run the code above in your browser using DataLab