Tidy report of regression models (to R Console or MS Word).
Most types of regression models are supported!
This function is an extension (and combination) of
texreg::screenreg()
,
texreg::htmlreg()
,
MuMIn::std.coef()
,
MuMIn::r.squaredGLMM()
,
performance::r2_mcfadden()
,
performance::r2_nagelkerke()
.
model_summary(
model_list,
std_coef = FALSE,
digits = nsmall,
nsmall = 3,
file = NULL,
zero = ifelse(std_coef, FALSE, TRUE),
modify_se = NULL,
modify_head = NULL,
bold = 0,
...
)
A single model or a list of models (of the same type). Most types of regression models are supported!
Standardized coefficients? Default is FALSE
.
Only applicable to linear models and linear mixed models.
Not applicable to generalized linear (mixed) models.
Number of decimal places of output. Default is 3
.
The same as digits
.
File name of MS Word (.doc
).
Display "0" before "."? Default is TRUE
.
Replace standard errors.
Useful if you need to replace raw SEs with robust SEs.
New SEs should be provided as a list of numeric vectors.
See usage in texreg::screenreg()
.
Replace model names.
The p-value threshold below which the coefficients will be formatted in bold.
Other parameters passed to
texreg::screenreg()
or
texreg::htmlreg()
.
Invisibly return the output (character string).
# NOT RUN {
## Example 1: Linear Model
lm1=lm(Temp ~ Month + Day, data=airquality)
lm2=lm(Temp ~ Month + Day + Wind + Solar.R, data=airquality)
model_summary(lm1)
model_summary(lm2)
model_summary(list(lm1, lm2))
model_summary(list(lm1, lm2), std=TRUE, digits=2)
model_summary(list(lm1, lm2), file="OLS Models.doc")
unlink("OLS Models.doc") # delete file for test
## Example 2: Generalized Linear Model
glm1=glm(case ~ age + parity,
data=infert, family=binomial)
glm2=glm(case ~ age + parity + education + spontaneous + induced,
data=infert, family=binomial)
model_summary(list(glm1, glm2)) # "std_coef" is not applicable to glm
model_summary(list(glm1, glm2), file="GLM Models.doc")
unlink("GLM Models.doc") # delete file for test
## Example 3: Linear Mixed Model
library(lmerTest)
hlm1=lmer(Reaction ~ (1 | Subject), data=sleepstudy)
hlm2=lmer(Reaction ~ Days + (1 | Subject), data=sleepstudy)
hlm3=lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy)
model_summary(list(hlm1, hlm2, hlm3))
model_summary(list(hlm1, hlm2, hlm3), std=TRUE)
model_summary(list(hlm1, hlm2, hlm3), file="HLM Models.doc")
unlink("HLM Models.doc") # delete file for test
## Example 4: Generalized Linear Mixed Model
library(lmerTest)
data.glmm=MASS::bacteria
glmm1=glmer(y ~ trt + week + (1 | ID), data=data.glmm, family=binomial)
glmm2=glmer(y ~ trt + week + hilo + (1 | ID), data=data.glmm, family=binomial)
model_summary(list(glmm1, glmm2)) # "std_coef" is not applicable to glmm
model_summary(list(glmm1, glmm2), file="GLMM Models.doc")
unlink("GLMM Models.doc") # delete file for test
## Example 5: Multinomial Logistic Model
library(nnet)
d=airquality
d$Month=as.factor(d$Month) # Factor levels: 5, 6, 7, 8, 9
mn1=multinom(Month ~ Temp, data=d, Hess=TRUE)
mn2=multinom(Month ~ Temp + Wind + Ozone, data=d, Hess=TRUE)
model_summary(mn1)
model_summary(mn2)
model_summary(mn2, file="Multinomial Logistic Model.doc")
unlink("Multinomial Logistic Model.doc") # delete file for test
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab