#############################################################################
# EXAMPLE 1: Model fit for sim.dina
#############################################################################
data(sim.dina)
data(sim.qmatrix)
#*** Model 1: DINA model for DINA simulated data
mod1 <- din(sim.dina, q.matr = sim.qmatrix, rule = "DINA" )
fmod1 <- modelfit.cor.din(mod1 , jkunits=10)
summary(fmod1)
## Test of Global Model Fit
## type value p
## 1 max(X2) 8.728 0.113
## 2 abs(fcor) 0.143 0.080
##
## Fit Statistics
## est jkunits jk_est jk_se est_low est_upp
## MADcor 0.030 10 0.020 0.005 0.010 0.030
## SRMSR 0.040 10 0.023 0.006 0.011 0.035
## MX2 0.719 10 0.819 0.178 0.470 1.168
## 100*MADRESIDCOV 0.671 10 0.445 0.125 0.200 0.690
## MADQ3 0.062 10 0.037 0.008 0.021 0.052
## MADaQ3 0.059 10 0.034 0.008 0.019 0.050
# look at first five item pairs with highest local dependence
itempairs <- fmod1$itempairs
itempairs <- itempairs[ order( itempairs$X2 , decreasing=TRUE ) , ]
itempairs[ 1:5 , c("item1","item2" , "X2" , "X2_p" , "X2_p.holm" , "Q3") ]
## item1 item2 X2 X2_p X2_p.holm Q3
## 29 Item5 Item8 8.728248 0.003133174 0.1127943 -0.26616414
## 32 Item6 Item8 2.644912 0.103881881 1.0000000 0.04873154
## 21 Item3 Item9 2.195011 0.138458201 1.0000000 0.05948456
## 10 Item2 Item4 1.449106 0.228671389 1.0000000 -0.08036216
## 30 Item5 Item9 1.393583 0.237800911 1.0000000 -0.01934420
#*** Model 2: DINO model for DINA simulated data
mod2 <- din(sim.dina, q.matr = sim.qmatrix, rule = "DINO" )
fmod2 <- modelfit.cor.din(mod2 , jkunits=10 ) # 10 jackknife units
summary(fmod2)
## Test of Global Model Fit
## type value p
## 1 max(X2) 13.139 0.010
## 2 abs(fcor) 0.199 0.001
##
## Fit Statistics
## est jkunits jk_est jk_se est_low est_upp
## MADcor 0.056 10 0.041 0.007 0.026 0.055
## SRMSR 0.072 10 0.045 0.019 0.007 0.083
## MX2 2.204 10 2.621 1.113 0.438 4.803
## 100*MADRESIDCOV 1.225 10 0.878 0.183 0.519 1.236
## MADQ3 0.073 10 0.055 0.012 0.031 0.080
## MADaQ3 0.073 10 0.066 0.012 0.042 0.089
#*** Model 3: estimate DINA model with gdina function
mod3 <- gdina( sim.dina , q.matr = sim.qmatrix , rule="DINA" )
fmod3 <- modelfit.cor.din( mod3 , jkunits=0 ) # no Jackknife estimation
summary(fmod3)
## Test of Global Model Fit
## type value p
## 1 max(X2) 8.756 0.111
## 2 abs(fcor) 0.143 0.078
##
## Fit Statistics
## est
## MADcor 0.030
## SRMSR 0.040
## MX2 0.719
## 100*MADRESIDCOV 0.668
## MADQ3 0.062
## MADaQ3 0.059
Run the code above in your browser using DataLab