Learn R Programming

MachineShop (version 2.0.0)

models: Model Functions

Description

Model constructor functions supplied by MachineShop are summarized in the table below according to the types of response variables with which each can be used.

Function Categorical Continuous Survival
AdaBagModel f
AdaBoostModel f
BARTModel f n S
BARTMachineModel b n
BlackBoostModel b n S
C50Model f
CForestModel f n S
CoxModel S
CoxStepAICModel S
EarthModel f n
FDAModel f
GAMBoostModel b n S
GBMModel f n S
GLMBoostModel b n S
GLMModel b n
GLMStepAICModel b n
GLMNetModel f m,n S
KNNModel f,o n
LARSModel n
LDAModel f
LMModel f m,n
MDAModel f
NaiveBayesModel f
NNetModel f n
PDAModel f
PLSModel f n
POLRModel o
QDAModel f
RandomForestModel f n
RangerModel f n S
RPartModel f n S
SurvRegModel S
SurvRegStepAICModel S
SVMModel f n
SVMANOVAModel f n
SVMBesselModel f n
SVMLaplaceModel f n
SVMLinearModel f n
SVMPolyModel f n
SVMRadialModel f n
SVMSplineModel f n
SVMTanhModel f n
TreeModel f n
XGBModel f n
XGBDARTModel f n
XGBLinearModel f n
XGBTreeModel f n

Categorical: b = binary, f = factor, o = ordered Continuous: m = matrix, n = numeric Survival: S = Surv

Automated combinations, tuning, or selection of these models can be defined with the following meta-model functions:

StackedModel Stacked Regression
SuperModel Super Learner
TunedModel Model Tuning over Parameter Grid
SelectedModel Model Selection from Candidate Set

Arguments

See Also

modelinfo, fit, resample