train. Custom models can also be created. See the URL below.Bagged CART (method = 'treebag')
For classification and regression using packages
Bagged Flexible Discriminant Analysis (method = 'bagFDA')
For classification using packages
degree)nprune)
Bagged Logic Regression (method = 'logicBag')
For classification and regression using package
nleaves)ntrees)
Bagged MARS (method = 'bagEarth')
For classification and regression using package
nprune)degree)
Bagged Model (method = 'bag')
For classification and regression using package
vars)
Bayesian Generalized Linear Model (method = 'bayesglm')
For classification and regression using package
Bayesian Regularized Neural Networks (method = 'brnn')
For regression using package
neurons)
Boosted Classification Trees (method = 'ada')
For classification using package
iter)maxdepth)nu)
Boosted Generalized Additive Model (method = 'gamboost')
For classification and regression using package
mstop)prune)
Boosted Generalized Linear Model (method = 'glmboost')
For classification and regression using package
mstop)prune)
Boosted Linear Model (method = 'bstLs')
For classification and regression using packages
mstop)nu)
Boosted Logistic Regression (method = 'LogitBoost')
For classification using package
nIter)
Boosted Smoothing Spline (method = 'bstSm')
For classification and regression using packages
mstop)nu)
Boosted Tree (method = 'blackboost')
For classification and regression using packages
mstop)maxdepth)
Boosted Tree (method = 'bstTree')
For classification and regression using packages
mstop)maxdepth)nu)
C4.5-like Trees (method = 'J48')
For classification using package
C)
C5.0 (method = 'C5.0')
For classification using packages
trials)model)winnow)
CART (method = 'rpart')
For classification and regression using package
cp)
CART (method = 'rpart2')
For classification and regression using package
maxdepth)
Conditional Inference Random Forest (method = 'cforest')
For classification and regression using package
mtry)
Conditional Inference Tree (method = 'ctree')
For classification and regression using package
mincriterion)
Conditional Inference Tree (method = 'ctree2')
For classification and regression using package
maxdepth)
Cost-Sensitive C5.0 (method = 'C5.0Cost')
For classification using packages
trials)model)winnow)cost)
Cost-Sensitive CART (method = 'rpartCost')
For classification using package
cp)Cost)
Cubist (method = 'cubist')
For regression using package
committees)neighbors)
Elasticnet (method = 'enet')
For regression using package
fraction)lambda)
Extreme Learning Machine (method = 'elm')
For classification and regression using package
nhid)actfun)
Factor-Based Linear Discriminant Analysis (method = 'RFlda')
For classification using package
q)
Flexible Discriminant Analysis (method = 'fda')
For classification using packages
degree)nprune)
Gaussian Process (method = 'gaussprLinear')
For classification and regression using package
Gaussian Process with Polynomial Kernel (method = 'gaussprPoly')
For classification and regression using package
degree)scale)
Gaussian Process with Radial Basis Function Kernel (method = 'gaussprRadial')
For classification and regression using package
sigma)
Generalized Additive Model using LOESS (method = 'gamLoess')
For classification and regression using package
span)degree)
Generalized Additive Model using Splines (method = 'gam')
For classification and regression using package
select)method)
Generalized Additive Model using Splines (method = 'gamSpline')
For classification and regression using package
df)
Generalized Linear Model (method = 'glm')
For classification and regression with no tuning parameters
Generalized Linear Model with Stepwise Feature Selection (method = 'glmStepAIC')
For classification and regression using package
Generalized Partial Least Squares (method = 'gpls')
For classification using package
K.prov)
glmnet (method = 'glmnet')
For classification and regression using package
alpha)lambda)
Greedy Prototype Selection (method = 'protoclass')
For classification using packages
eps)Minkowski)
Heteroscedastic Discriminant Analysis (method = 'hda')
For classification using package
gamma)lambda)newdim)
High Dimensional Discriminant Analysis (method = 'hdda')
For classification using package
threshold)model)
Independent Component Regression (method = 'icr')
For regression using package
n.comp)
k-Nearest Neighbors (method = 'kknn')
For classification and regression using package
kmax)distance)kernel)
k-Nearest Neighbors (method = 'knn')
For classification and regression with tuning parameters:
k)
Learning Vector Quantization (method = 'lvq')
For classification using package
size)k)
Least Angle Regression (method = 'lars')
For regression using package
fraction)
Least Angle Regression (method = 'lars2')
For regression using package
step)
Least Squares Support Vector Machine (method = 'lssvmLinear')
For classification using package
Least Squares Support Vector Machine with Polynomial Kernel (method = 'lssvmPoly')
For classification using package
degree)scale)
Least Squares Support Vector Machine with Radial Basis Function Kernel (method = 'lssvmRadial')
For classification using package
sigma)
Linear Discriminant Analysis (method = 'lda')
For classification using package
Linear Discriminant Analysis (method = 'lda2')
For classification using package
dimen)
Linear Discriminant Analysis with Stepwise Feature Selection (method = 'stepLDA')
For classification using packages
maxvar)direction)
Linear Regression (method = 'lm')
For regression with no tuning parameters
Linear Regression with Backwards Selection (method = 'leapBackward')
For regression using package
nvmax)
Linear Regression with Forward Selection (method = 'leapForward')
For regression using package
nvmax)
Linear Regression with Stepwise Selection (method = 'leapSeq')
For regression using package
nvmax)
Linear Regression with Stepwise Selection (method = 'lmStepAIC')
For regression using package
Logic Regression (method = 'logreg')
For classification and regression using package
treesize)ntrees)
Logistic Model Trees (method = 'LMT')
For classification using package
iter)
Maximum Uncertainty Linear Discriminant Analysis (method = 'Mlda')
For classification using package
Mixture Discriminant Analysis (method = 'mda')
For classification using package
subclasses)
Model Averaged Neural Network (method = 'avNNet')
For classification and regression using package
size)decay)bag)
Model Rules (method = 'M5Rules')
For regression using package
pruned)smoothed)
Model Tree (method = 'M5')
For regression using package
pruned)smoothed)rules)
Multi-Layer Perceptron (method = 'mlp')
For classification and regression using package
size)
Multi-Layer Perceptron (method = 'mlpWeightDecay')
For classification and regression using package
size)decay)
Multivariate Adaptive Regression Spline (method = 'earth')
For classification and regression using package
nprune)degree)
Multivariate Adaptive Regression Splines (method = 'gcvEarth')
For classification and regression using package
degree)
Naive Bayes (method = 'nb')
For classification using package
fL)usekernel)
Nearest Shrunken Centroids (method = 'pam')
For classification using package
threshold)
Neural Network (method = 'neuralnet')
For regression using package
layer1)layer2)layer3)
Neural Network (method = 'nnet')
For classification and regression using package
size)decay)
Neural Networks with Feature Extraction (method = 'pcaNNet')
For classification and regression using package
size)decay)
Oblique Random Forest (method = 'ORFlog')
For classification using package
mtry)
Oblique Random Forest (method = 'ORFpls')
For classification using package
mtry)
Oblique Random Forest (method = 'ORFridge')
For classification using package
mtry)
Oblique Random Forest (method = 'ORFsvm')
For classification using package
mtry)
Oblique Trees (method = 'oblique.tree')
For classification using package
oblique.splits)variable.selection)
Parallel Random Forest (method = 'parRF')
For classification and regression using package
mtry)
partDSA (method = 'partDSA')
For classification and regression using package
cut.off.growth)MPD)
Partial Least Squares (method = 'kernelpls')
For classification and regression using package
ncomp)
Partial Least Squares (method = 'pls')
For classification and regression using package
ncomp)
Partial Least Squares (method = 'simpls')
For classification and regression using package
ncomp)
Partial Least Squares (method = 'widekernelpls')
For classification and regression using package
ncomp)
Penalized Discriminant Analysis (method = 'pda')
For classification using package
lambda)
Penalized Discriminant Analysis (method = 'pda2')
For classification using package
df)
Penalized Linear Discriminant Analysis (method = 'PenalizedLDA')
For classification using packages
lambda)K)
Penalized Linear Regression (method = 'penalized')
For regression using package
lambda1)lambda2)
Penalized Logistic Regression (method = 'plr')
For classification using package
lambda)cp)
Penalized Multinomial Regression (method = 'multinom')
For classification using package
decay)
Polynomial Kernel Regularized Least Squares (method = 'krlsPoly')
For regression using package
lambda)degree)
Principal Component Analysis (method = 'pcr')
For regression using package
ncomp)
Projection Pursuit Regression (method = 'ppr')
For regression with tuning parameters:
nterms)
Quadratic Discriminant Analysis (method = 'qda')
For classification using package
Quadratic Discriminant Analysis with Stepwise Feature Selection (method = 'stepQDA')
For classification using packages
maxvar)direction)
Quantile Random Forest (method = 'qrf')
For regression using package
mtry)
Quantile Regression Neural Network (method = 'qrnn')
For regression using package
n.hidden)penalty)bag)
Radial Basis Function Kernel Regularized Least Squares (method = 'krlsRadial')
For regression using packages
lambda)sigma)
Radial Basis Function Network (method = 'rbf')
For classification using package
size)
Radial Basis Function Network (method = 'rbfDDA')
For classification and regression using package
negativeThreshold)
Random Ferns (method = 'rFerns')
For classification using package
depth)
Random Forest (method = 'rf')
For classification and regression using package
mtry)
Random Forest by Randomization (method = 'extraTrees')
For classification and regression using package
mtry)numRandomCuts)
Random Forest with Additional Feature Selection (method = 'Boruta')
For classification and regression using packages
mtry)
Random k-Nearest Neighbors (method = 'rknn')
For classification and regression using package
k)mtry)
Random k-Nearest Neighbors with Feature Selection (method = 'rknnBel')
For classification and regression using packages
k)mtry)d)
Regularized Discriminant Analysis (method = 'rda')
For classification using package
gamma)lambda)
Regularized Random Forest (method = 'RRF')
For classification and regression using packages
mtry)coefReg)coefImp)
Regularized Random Forest (method = 'RRFglobal')
For classification and regression using package
mtry)coefReg)
Relaxed Lasso (method = 'relaxo')
For regression using packages
lambda)phi)
Relevance Vector Machines with Linear Kernel (method = 'rvmLinear')
For regression using package
Relevance Vector Machines with Polynomial Kernel (method = 'rvmPoly')
For regression using package
scale)degree)
Relevance Vector Machines with Radial Basis Function Kernel (method = 'rvmRadial')
For regression using package
sigma)
Ridge Regression (method = 'ridge')
For regression using package
lambda)
Ridge Regression with Variable Selection (method = 'foba')
For regression using package
k)lambda)
Robust Linear Discriminant Analysis (method = 'Linda')
For classification using package
Robust Linear Model (method = 'rlm')
For regression using package
Robust Quadratic Discriminant Analysis (method = 'QdaCov')
For classification using package
Robust Regularized Linear Discriminant Analysis (method = 'rrlda')
For classification using package
lambda)hp)penalty)
Robust SIMCA (method = 'RSimca')
For classification using package
ROC-Based Classifier (method = 'rocc')
For classification using package
xgenes)
Rule-Based Classifier (method = 'JRip')
For classification using package
NumOpt)
Rule-Based Classifier (method = 'PART')
For classification using package
threshold)pruned)
Self-Organizing Map (method = 'bdk')
For classification and regression using package
xdim)ydim)xweight)topo)
Self-Organizing Maps (method = 'xyf')
For classification and regression using package
xdim)ydim)xweight)topo)
Shrinkage Discriminant Analysis (method = 'sda')
For classification using package
diagonal)lambda)
SIMCA (method = 'CSimca')
For classification using package
Single C5.0 Ruleset (method = 'C5.0Rules')
For classification using package
Single C5.0 Tree (method = 'C5.0Tree')
For classification using package
Single Rule Classification (method = 'OneR')
For classification using package
Sparse Linear Discriminant Analysis (method = 'sparseLDA')
For classification using package
NumVars)lambda)
Sparse Mixture Discriminant Analysis (method = 'smda')
For classification using package
NumVars)lambda)R)
Sparse Partial Least Squares (method = 'spls')
For classification and regression using package
K)eta)kappa)
Stabilized Linear Discriminant Analysis (method = 'slda')
For classification using package
Stacked AutoEncoder Deep Neural Network (method = 'dnn')
For classification and regression using package
layer1)layer2)layer3)hidden_dropout)visible_dropout)
Stepwise Diagonal Linear Discriminant Analysis (method = 'sddaLDA')
For classification using package
Stepwise Diagonal Quadratic Discriminant Analysis (method = 'sddaQDA')
For classification using package
Stochastic Gradient Boosting (method = 'gbm')
For classification and regression using packages
n.trees)interaction.depth)shrinkage)
Supervised Principal Component Analysis (method = 'superpc')
For regression using package
threshold)n.components)
Support Vector Machines with Class Weights (method = 'svmRadialWeights')
For classification using package
sigma)C)Weight)
Support Vector Machines with Linear Kernel (method = 'svmLinear')
For classification and regression using package
C)
Support Vector Machines with Polynomial Kernel (method = 'svmPoly')
For classification and regression using package
degree)scale)C)
Support Vector Machines with Radial Basis Function Kernel (method = 'svmRadial')
For classification and regression using package
sigma)C)
Support Vector Machines with Radial Basis Function Kernel (method = 'svmRadialCost')
For classification and regression using package
C)
The lasso (method = 'lasso')
For regression using package
fraction)
Tree Models from Genetic Algorithms (method = 'evtree')
For classification and regression using package
alpha)
Tree-Based Ensembles (method = 'nodeHarvest')
For classification and regression using package
maxinter)mode)
Variational Bayesian Multinomial Probit Regression (method = 'vbmpRadial')
For classification using package
estimateTheta)train'' (