train. Custom models can also be created. See the URL below.AdaBoost.M1 (method = 'AdaBoost.M1')
For classification using packages
mfinal, numeric)maxdepth, numeric)coeflearn, character)
Adaptive Mixture Discriminant Analysis (method = 'amdai')
For classification using package
model, character)
Adaptive-Network-Based Fuzzy Inference System (method = 'ANFIS')
For regression using package
num.labels, numeric)max.iter, numeric)
Bagged AdaBoost (method = 'AdaBag')
For classification using packages
mfinal, numeric)maxdepth, numeric)
Bagged CART (method = 'treebag')
For classification and regression using packages
Bagged FDA using gCV Pruning (method = 'bagFDAGCV')
For classification using package
degree, numeric)
Bagged Flexible Discriminant Analysis (method = 'bagFDA')
For classification using packages
degree, numeric)nprune, numeric)
Bagged Logic Regression (method = 'logicBag')
For classification and regression using package
nleaves, numeric)ntrees, numeric)
Bagged MARS (method = 'bagEarth')
For classification and regression using package
nprune, numeric)degree, numeric)
Bagged MARS using gCV Pruning (method = 'bagEarthGCV')
For classification and regression using package
degree, numeric)
Bagged Model (method = 'bag')
For classification and regression using package
vars, numeric)
Bayesian Generalized Linear Model (method = 'bayesglm')
For classification and regression using package
Bayesian Regularized Neural Networks (method = 'brnn')
For regression using package
neurons, numeric)
Binary Discriminant Analysis (method = 'binda')
For classification using package
lambda.freqs, numeric)
Boosted Classification Trees (method = 'ada')
For classification using packages
iter, numeric)maxdepth, numeric)nu, numeric)
Boosted Generalized Additive Model (method = 'gamboost')
For classification and regression using package
mstop, numeric)prune, character)
Boosted Generalized Linear Model (method = 'glmboost')
For classification and regression using package
mstop, numeric)prune, character)
Boosted Linear Model (method = 'bstLs')
For classification and regression using packages
mstop, numeric)nu, numeric)
Boosted Logistic Regression (method = 'LogitBoost')
For classification using package
nIter, numeric)
Boosted Smoothing Spline (method = 'bstSm')
For classification and regression using packages
mstop, numeric)nu, numeric)
Boosted Tree (method = 'blackboost')
For classification and regression using packages
mstop, numeric)maxdepth, numeric)
Boosted Tree (method = 'bstTree')
For classification and regression using packages
mstop, numeric)maxdepth, numeric)nu, numeric)
C4.5-like Trees (method = 'J48')
For classification using package
C, numeric)
C5.0 (method = 'C5.0')
For classification using packages
trials, numeric)model, character)winnow, logical)
CART (method = 'rpart')
For classification and regression using package
cp, numeric)
CART (method = 'rpart2')
For classification and regression using package
maxdepth, numeric)
CHi-squared Automated Interaction Detection (method = 'chaid')
For classification using package
alpha2, numeric)alpha3, numeric)alpha4, numeric)
Conditional Inference Random Forest (method = 'cforest')
For classification and regression using package
mtry, numeric)
Conditional Inference Tree (method = 'ctree')
For classification and regression using package
mincriterion, numeric)
Conditional Inference Tree (method = 'ctree2')
For classification and regression using package
maxdepth, numeric)
Cost-Sensitive C5.0 (method = 'C5.0Cost')
For classification using packages
trials, numeric)model, character)winnow, logical)cost, numeric)
Cost-Sensitive CART (method = 'rpartCost')
For classification using package
cp, numeric)Cost, numeric)
Cubist (method = 'cubist')
For regression using package
committees, numeric)neighbors, numeric)
Dynamic Evolving Neural-Fuzzy Inference System (method = 'DENFIS')
For regression using package
Dthr, numeric)max.iter, numeric)
Elasticnet (method = 'enet')
For regression using package
fraction, numeric)lambda, numeric)
Ensemble Partial Least Squares Regression (method = 'enpls')
For regression using package
maxcomp, numeric)
Ensemble Partial Least Squares Regression with Feature Selection (method = 'enpls.fs')
For regression using package
maxcomp, numeric)threshold, numeric)
eXtreme Gradient Boosting (method = 'xgbLinear')
For classification and regression using package
nrounds, numeric)lambda, numeric)alpha, numeric)
eXtreme Gradient Boosting (method = 'xgbTree')
For classification and regression using packages
nrounds, numeric)max_depth, numeric)eta, numeric)
Extreme Learning Machine (method = 'elm')
For classification and regression using package
nhid, numeric)actfun, character)
Factor-Based Linear Discriminant Analysis (method = 'RFlda')
For classification using package
q, numeric)
Flexible Discriminant Analysis (method = 'fda')
For classification using packages
degree, numeric)nprune, numeric)
Fuzzy Inference Rules by Descent Method (method = 'FIR.DM')
For regression using package
num.labels, numeric)max.iter, numeric)
Fuzzy Rules Using Chi's Method (method = 'FRBCS.CHI')
For classification using package
num.labels, numeric)type.mf, character)
Fuzzy Rules Using Genetic Cooperative-Competitive Learning (method = 'GFS.GCCL')
For classification using package
num.labels, numeric)popu.size, numeric)max.gen, numeric)
Fuzzy Rules Using Genetic Cooperative-Competitive Learning and Pittsburgh (method = 'FH.GBML')
For classification using package
max.num.rule, numeric)popu.size, numeric)max.gen, numeric)
Fuzzy Rules Using the Structural Learning Algorithm on Vague Environment (method = 'SLAVE')
For classification using package
num.labels, numeric)max.iter, numeric)max.gen, numeric)
Fuzzy Rules via MOGUL (method = 'GFS.FR.MOGAL')
For regression using package
max.gen, numeric)max.iter, numeric)max.tune, numeric)
Fuzzy Rules via Thrift (method = 'GFS.THRIFT')
For regression using package
popu.size, numeric)num.labels, numeric)max.gen, numeric)
Fuzzy Rules with Weight Factor (method = 'FRBCS.W')
For classification using package
num.labels, numeric)type.mf, character)
Gaussian Process (method = 'gaussprLinear')
For classification and regression using package
Gaussian Process with Polynomial Kernel (method = 'gaussprPoly')
For classification and regression using package
degree, numeric)scale, numeric)
Gaussian Process with Radial Basis Function Kernel (method = 'gaussprRadial')
For classification and regression using package
sigma, numeric)
Generalized Additive Model using LOESS (method = 'gamLoess')
For classification and regression using package
span, numeric)degree, numeric)
Generalized Additive Model using Splines (method = 'gam')
For classification and regression using package
select, logical)method, character)
Generalized Additive Model using Splines (method = 'gamSpline')
For classification and regression using package
df, numeric)
Generalized Linear Model (method = 'glm')
For classification and regression with no tuning parameters
Generalized Linear Model with Stepwise Feature Selection (method = 'glmStepAIC')
For classification and regression using package
Generalized Partial Least Squares (method = 'gpls')
For classification using package
K.prov, numeric)
Genetic Lateral Tuning and Rule Selection of Linguistic Fuzzy Systems (method = 'GFS.LT.RS')
For regression using package
popu.size, numeric)num.labels, numeric)max.gen, numeric)
glmnet (method = 'glmnet')
For classification and regression using package
alpha, numeric)lambda, numeric)
Greedy Prototype Selection (method = 'protoclass')
For classification using packages
eps, numeric)Minkowski, numeric)
Heteroscedastic Discriminant Analysis (method = 'hda')
For classification using package
gamma, numeric)lambda, numeric)newdim, numeric)
High Dimensional Discriminant Analysis (method = 'hdda')
For classification using package
threshold, character)model, numeric)
Hybrid Neural Fuzzy Inference System (method = 'HYFIS')
For regression using package
num.labels, numeric)max.iter, numeric)
Independent Component Regression (method = 'icr')
For regression using package
n.comp, numeric)
k-Nearest Neighbors (method = 'kknn')
For classification and regression using package
kmax, numeric)distance, numeric)kernel, character)
k-Nearest Neighbors (method = 'knn')
For classification and regression with tuning parameters:
k, numeric)
Learning Vector Quantization (method = 'lvq')
For classification using package
size, numeric)k, numeric)
Least Angle Regression (method = 'lars')
For regression using package
fraction, numeric)
Least Angle Regression (method = 'lars2')
For regression using package
step, numeric)
Least Squares Support Vector Machine (method = 'lssvmLinear')
For classification using package
Least Squares Support Vector Machine with Polynomial Kernel (method = 'lssvmPoly')
For classification using package
degree, numeric)scale, numeric)
Least Squares Support Vector Machine with Radial Basis Function Kernel (method = 'lssvmRadial')
For classification using package
sigma, numeric)
Linear Discriminant Analysis (method = 'lda')
For classification using package
Linear Discriminant Analysis (method = 'lda2')
For classification using package
dimen, numeric)
Linear Discriminant Analysis with Stepwise Feature Selection (method = 'stepLDA')
For classification using packages
maxvar, numeric)direction, character)
Linear Regression (method = 'lm')
For regression with no tuning parameters
Linear Regression with Backwards Selection (method = 'leapBackward')
For regression using package
nvmax, numeric)
Linear Regression with Forward Selection (method = 'leapForward')
For regression using package
nvmax, numeric)
Linear Regression with Stepwise Selection (method = 'leapSeq')
For regression using package
nvmax, numeric)
Linear Regression with Stepwise Selection (method = 'lmStepAIC')
For regression using package
Logic Regression (method = 'logreg')
For classification and regression using package
treesize, numeric)ntrees, numeric)
Logistic Model Trees (method = 'LMT')
For classification using package
iter, numeric)
Maximum Uncertainty Linear Discriminant Analysis (method = 'Mlda')
For classification using package
Mixture Discriminant Analysis (method = 'mda')
For classification using package
subclasses, numeric)
Model Averaged Neural Network (method = 'avNNet')
For classification and regression using package
size, numeric)decay, numeric)bag, logical)
Model Rules (method = 'M5Rules')
For regression using package
pruned, character)smoothed, character)
Model Tree (method = 'M5')
For regression using package
pruned, character)smoothed, character)rules, character)
Multi-Layer Perceptron (method = 'mlp')
For classification and regression using package
size, numeric)
Multi-Layer Perceptron (method = 'mlpWeightDecay')
For classification and regression using package
size, numeric)decay, numeric)
Multivariate Adaptive Regression Spline (method = 'earth')
For classification and regression using package
nprune, numeric)degree, numeric)
Multivariate Adaptive Regression Splines (method = 'gcvEarth')
For classification and regression using package
degree, numeric)
Naive Bayes (method = 'nb')
For classification using package
fL, numeric)usekernel, logical)
Nearest Shrunken Centroids (method = 'pam')
For classification using package
threshold, numeric)
Neural Network (method = 'neuralnet')
For regression using package
layer1, numeric)layer2, numeric)layer3, numeric)
Neural Network (method = 'nnet')
For classification and regression using package
size, numeric)decay, numeric)
Neural Networks with Feature Extraction (method = 'pcaNNet')
For classification and regression using package
size, numeric)decay, numeric)
Oblique Random Forest (method = 'ORFlog')
For classification using package
mtry, numeric)
Oblique Random Forest (method = 'ORFpls')
For classification using package
mtry, numeric)
Oblique Random Forest (method = 'ORFridge')
For classification using package
mtry, numeric)
Oblique Random Forest (method = 'ORFsvm')
For classification using package
mtry, numeric)
Oblique Trees (method = 'oblique.tree')
For classification using package
oblique.splits, character)variable.selection, character)
Ordered Logistic or Probit Regression (method = 'polr')
For classification using package
Parallel Random Forest (method = 'parRF')
For classification and regression using package
mtry, numeric)
partDSA (method = 'partDSA')
For classification and regression using package
cut.off.growth, numeric)MPD, numeric)
Partial Least Squares (method = 'kernelpls')
For classification and regression using package
ncomp, numeric)
Partial Least Squares (method = 'pls')
For classification and regression using package
ncomp, numeric)
Partial Least Squares (method = 'simpls')
For classification and regression using package
ncomp, numeric)
Partial Least Squares (method = 'widekernelpls')
For classification and regression using package
ncomp, numeric)
Partial Least Squares Generalized Linear Models (method = 'plsRglm')
For classification and regression using package
nt, numeric)alpha.pvals.expli, numeric)
Penalized Discriminant Analysis (method = 'pda')
For classification using package
lambda, numeric)
Penalized Discriminant Analysis (method = 'pda2')
For classification using package
df, numeric)
Penalized Linear Discriminant Analysis (method = 'PenalizedLDA')
For classification using packages
lambda, numeric)K, numeric)
Penalized Linear Regression (method = 'penalized')
For regression using package
lambda1, numeric)lambda2, numeric)
Penalized Logistic Regression (method = 'plr')
For classification using package
lambda, numeric)cp, character)
Penalized Multinomial Regression (method = 'multinom')
For classification using package
decay, numeric)
Polynomial Kernel Regularized Least Squares (method = 'krlsPoly')
For regression using package
lambda, numeric)degree, numeric)
Principal Component Analysis (method = 'pcr')
For regression using package
ncomp, numeric)
Projection Pursuit Regression (method = 'ppr')
For regression with tuning parameters:
nterms, numeric)
Quadratic Discriminant Analysis (method = 'qda')
For classification using package
Quadratic Discriminant Analysis with Stepwise Feature Selection (method = 'stepQDA')
For classification using packages
maxvar, numeric)direction, character)
Quantile Random Forest (method = 'qrf')
For regression using package
mtry, numeric)
Quantile Regression Neural Network (method = 'qrnn')
For regression using package
n.hidden, numeric)penalty, numeric)bag, logical)
Radial Basis Function Kernel Regularized Least Squares (method = 'krlsRadial')
For regression using packages
lambda, numeric)sigma, numeric)
Radial Basis Function Network (method = 'rbf')
For classification and regression using package
size, numeric)
Radial Basis Function Network (method = 'rbfDDA')
For classification and regression using package
negativeThreshold, numeric)
Random Ferns (method = 'rFerns')
For classification using package
depth, numeric)
Random Forest (method = 'rf')
For classification and regression using package
mtry, numeric)
Random Forest by Randomization (method = 'extraTrees')
For classification and regression using package
mtry, numeric)numRandomCuts, numeric)
Random Forest with Additional Feature Selection (method = 'Boruta')
For classification and regression using packages
mtry, numeric)
Random k-Nearest Neighbors (method = 'rknn')
For classification and regression using package
k, numeric)mtry, numeric)
Random k-Nearest Neighbors with Feature Selection (method = 'rknnBel')
For classification and regression using packages
k, numeric)mtry, numeric)d, numeric)
Regularized Discriminant Analysis (method = 'rda')
For classification using package
gamma, numeric)lambda, numeric)
Regularized Random Forest (method = 'RRF')
For classification and regression using packages
mtry, numeric)coefReg, numeric)coefImp, numeric)
Regularized Random Forest (method = 'RRFglobal')
For classification and regression using package
mtry, numeric)coefReg, numeric)
Relaxed Lasso (method = 'relaxo')
For regression using packages
lambda, numeric)phi, numeric)
Relevance Vector Machines with Linear Kernel (method = 'rvmLinear')
For regression using package
Relevance Vector Machines with Polynomial Kernel (method = 'rvmPoly')
For regression using package
scale, numeric)degree, numeric)
Relevance Vector Machines with Radial Basis Function Kernel (method = 'rvmRadial')
For regression using package
sigma, numeric)
Ridge Regression (method = 'ridge')
For regression using package
lambda, numeric)
Ridge Regression with Variable Selection (method = 'foba')
For regression using package
k, numeric)lambda, numeric)
Robust Linear Discriminant Analysis (method = 'Linda')
For classification using package
Robust Linear Model (method = 'rlm')
For regression using package
Robust Mixture Discriminant Analysis (method = 'rmda')
For classification using package
K, numeric)model, character)
Robust Quadratic Discriminant Analysis (method = 'QdaCov')
For classification using package
Robust Regularized Linear Discriminant Analysis (method = 'rrlda')
For classification using package
lambda, numeric)hp, numeric)penalty, character)
Robust SIMCA (method = 'RSimca')
For classification using package
ROC-Based Classifier (method = 'rocc')
For classification using package
xgenes, numeric)
Rule-Based Classifier (method = 'JRip')
For classification using package
NumOpt, numeric)
Rule-Based Classifier (method = 'PART')
For classification using package
threshold, numeric)pruned, character)
Self-Organizing Map (method = 'bdk')
For classification and regression using package
xdim, numeric)ydim, numeric)xweight, numeric)topo, character)
Self-Organizing Maps (method = 'xyf')
For classification and regression using package
xdim, numeric)ydim, numeric)xweight, numeric)topo, character)
Shrinkage Discriminant Analysis (method = 'sda')
For classification using package
diagonal, logical)lambda, numeric)
SIMCA (method = 'CSimca')
For classification using package
Simplified TSK Fuzzy Rules (method = 'FS.HGD')
For regression using package
num.labels, numeric)max.iter, numeric)
Single C5.0 Ruleset (method = 'C5.0Rules')
For classification using package
Single C5.0 Tree (method = 'C5.0Tree')
For classification using package
Single Rule Classification (method = 'OneR')
For classification using package
Sparse Linear Discriminant Analysis (method = 'sparseLDA')
For classification using package
NumVars, numeric)lambda, numeric)
Sparse Mixture Discriminant Analysis (method = 'smda')
For classification using package
NumVars, numeric)lambda, numeric)R, numeric)
Sparse Partial Least Squares (method = 'spls')
For classification and regression using package
K, numeric)eta, numeric)kappa, numeric)
Stabilized Linear Discriminant Analysis (method = 'slda')
For classification using package
Stacked AutoEncoder Deep Neural Network (method = 'dnn')
For classification and regression using package
layer1, numeric)layer2, numeric)layer3, numeric)hidden_dropout, numeric)visible_dropout, numeric)
Stepwise Diagonal Linear Discriminant Analysis (method = 'sddaLDA')
For classification using package
Stepwise Diagonal Quadratic Discriminant Analysis (method = 'sddaQDA')
For classification using package
Stochastic Gradient Boosting (method = 'gbm')
For classification and regression using packages
n.trees, numeric)interaction.depth, numeric)shrinkage, numeric)n.minobsinnode, numeric)
Subtractive Clustering and Fuzzy c-Means Rules (method = 'SBC')
For regression using package
r.a, numeric)eps.high, numeric)eps.low, numeric)
Supervised Principal Component Analysis (method = 'superpc')
For regression using package
threshold, numeric)n.components, numeric)
Support Vector Machines with Boundrange String Kernel (method = 'svmBoundrangeString')
For classification and regression using package
length, numeric)C, numeric)
Support Vector Machines with Class Weights (method = 'svmRadialWeights')
For classification using package
sigma, numeric)C, numeric)Weight, numeric)
Support Vector Machines with Exponential String Kernel (method = 'svmExpoString')
For classification and regression using package
lambda, numeric)C, numeric)
Support Vector Machines with Linear Kernel (method = 'svmLinear')
For classification and regression using package
C, numeric)
Support Vector Machines with Polynomial Kernel (method = 'svmPoly')
For classification and regression using package
degree, numeric)scale, numeric)C, numeric)
Support Vector Machines with Radial Basis Function Kernel (method = 'svmRadial')
For classification and regression using package
sigma, numeric)C, numeric)
Support Vector Machines with Radial Basis Function Kernel (method = 'svmRadialCost')
For classification and regression using package
C, numeric)
Support Vector Machines with Spectrum String Kernel (method = 'svmSpectrumString')
For classification and regression using package
length, numeric)C, numeric)
The lasso (method = 'lasso')
For regression using package
fraction, numeric)
Tree Models from Genetic Algorithms (method = 'evtree')
For classification and regression using package
alpha, numeric)
Tree-Based Ensembles (method = 'nodeHarvest')
For classification and regression using package
maxinter, numeric)mode, character)
Variational Bayesian Multinomial Probit Regression (method = 'vbmpRadial')
For classification using package
estimateTheta, character)
Wang and Mendel Fuzzy Rules (method = 'WM')
For regression using package
num.labels, numeric)type.mf, character)
Weighted Subspace Random Forest (method = 'wsrf')
For classification using package
mtry, numeric)train'' (